scholarly journals Trypanosoma brucei RNA Binding Proteins p34 and p37 Mediate NOPP44/46 Cellular Localization via the Exportin 1 Nuclear Export Pathway

2007 ◽  
Vol 6 (12) ◽  
pp. 2206-2213 ◽  
Author(s):  
Kristina Hellman ◽  
Kimberly Prohaska ◽  
Noreen Williams

ABSTRACT We have previously identified and characterized two novel nuclear RNA binding proteins, p34 and p37, which have been shown to interact with a family of nucleolar phosphoproteins, NOPP44/46, in Trypanosoma brucei. These proteins are nearly identical, the major difference being an 18-amino-acid insert in the N terminus of p37. In order to characterize the interaction between p34 and p37 and NOPP44/46, we have utilized an RNA interference (RNAi) cell line that specifically targets p34 and p37. Within these RNAi cells, we detected a disruption of a higher-molecular-weight complex containing NOPP44/46, as well as a dramatic increase in nuclear NOPP44/46 protein levels. We demonstrated that no change occurred in NOPP44/46 mRNA steady-state levels or stability, nor was there a change in cellular protein levels. These results led us to investigate whether p34 and p37 regulate NOPP44/46 cellular localization. Examination of the p34 and p37 amino acid sequences revealed a leucine-rich nuclear export signal, which interacts with the nuclear export factor exportin 1. Immune capture experiments demonstrated that p34, p37, and NOPP44/46 associate with exportin 1. When these experiments were performed with p34/p37 RNAi cells, NOPP44/46 no longer associated with exportin 1. Sequential immune capture experiments demonstrated that p34, p37, NOPP44/46, and exportin 1 exist in a common complex. Inhibiting exportin 1-mediated nuclear export led to an increase in nuclear NOPP44/46 proteins, indicating that they are exported from the nucleus via this pathway. Together, our results demonstrate that p34 and p37 regulate NOPP44/46 cellular localization by facilitating their association with exportin 1.

1997 ◽  
Vol 17 (4) ◽  
pp. 2158-2165 ◽  
Author(s):  
A F Ross ◽  
Y Oleynikov ◽  
E H Kislauskis ◽  
K L Taneja ◽  
R H Singer

Localization of beta-actin mRNA to the leading edge of fibroblasts requires the presence of conserved elements in the 3' untranslated region of the mRNA, including a 54-nucleotide element which has been termed the "zipcode" (E. Kislauskis, X. Zhu, and R. H. Singer, J. Cell Biol. 127:441-451, 1994). In order to identify proteins which bind to the zipcode and possibly play a role in localization, we performed band-shift mobility assays, UV cross-linking, and affinity purification experiments. A protein of 68 kDa was identified which binds to the proximal (to the coding region) half of the zipcode with high specificity (ZBP-1). Microsequencing provided unique peptide sequences of approximately 15 residues each. Degenerate primers corresponding to the codons derived from the peptides were synthesized and used for PCR amplification. Screening of a chicken cDNA library resulted in isolation of several clones providing a DNA sequence encoding a 67.7-kDa protein with regions homologous to several RNA-binding proteins, such as hnRNP E1 and E2, and with consensus mRNA recognition motif with RNP1 and 2 motifs and a putative REV-like nuclear export signal. Antipeptide antibodies were raised in rabbits which bound to ZBP-1 and coimmunoprecipitated proteins of 120 and 25 kDa. The 120-kDa protein was also obtained by affinity purification with the RNA zipcode sequence, along with a 53-kDa protein, but the 25-kDa protein appeared only in immunoprecipitations. Mutation of one of the conserved sequences within the zipcode, an ACACCC element in its proximal half, greatly reduced its protein binding and localization properties. These data suggest that the 68-kDa ZBP-1 we have isolated and cloned is an RNA-binding protein that functions within a complex to localize beta-actin mRNA.


Cytoskeleton ◽  
2017 ◽  
Vol 74 (4) ◽  
pp. 161-169 ◽  
Author(s):  
L. A. Mamon ◽  
V. R. Ginanova ◽  
S. F. Kliver ◽  
A. O. Yakimova ◽  
A. A. Atsapkina ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Ahmed Salem ◽  
Carter J. Wilson ◽  
Benjamin S. Rutledge ◽  
Allison Dilliott ◽  
Sali Farhan ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.


2019 ◽  
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

AbstractKinetoplastids rely heavily on post-transcriptional mechanisms for control of gene expression, and on RNA-binding proteins that regulate mRNA splicing, translation and decay. Trypanosoma brucei ERBP1 (Tb927.10.14150) and ERBP2 (Tb927.9.9550) were previously identified as mRNA binding proteins that lack canonical RNA-binding domains. We here show that ERBP1 is associated with the endoplasmic reticulum, like ERBP2, and that the two proteins interact in vivo. Loss of ERBP1 from bloodstream-form T. brucei initially resulted in a growth defect but proliferation was restored after more prolonged cultivation. Results from a pull-down of tagged ERBP1 suggest that it preferentially binds to ribosomal protein mRNAs. The ERBP1 sequence resembles that of Saccharomyces cerevisiae Bfr1, which also localises to the endoplasmic reticulum and binds to ribosomal protein mRNAs. However, unlike Bfr1, ERBP1 does not bind to mRNAs encoding secreted proteins, and it is also not recruited to stress granules after starvation.


2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


1994 ◽  
Vol 304 (3) ◽  
pp. 833-841 ◽  
Author(s):  
Y Wu ◽  
J Deford ◽  
R Benjamin ◽  
M G Lee ◽  
L Ruben

The flagellum of Trypanosoma brucei contains calmodulin, and a separate family of antigenically related EF-hand calcium-binding proteins which we call calflagins. The following study evaluates the structure and genomic organization of the calflagin family. Genomic Southern blots indicated that multiple copies of calflagin genes occurred in T. brucei, and that all of these copies were contained in a single 23 kb XhoI-XhoI fragment on chromosomes 15 and 16 mRNAs of 1.2 and 1.6 kb were identified in bloodstream and procyclic life-cycle stages. Genomic fragments of 2.5 and 1.7 kb were cloned that encoded calflagin sequences. The calflagin genes were arranged tandemly along the genomic fragments. Three new members of the calflagin family were sequenced from a cDNA clone and the two genomic clones. Two unrelated families of 3′ flanking sequences were downstream from the calflagin genes. An open reading frame that was unrelated to any calflagin sequence was at the 5′ end of the 2.5 kb genomic fragment. The deduced amino acid sequences of the genomic clones (called Tb-24 and Tb-1.7g) were similar to the previously described Tb-17. Each encoded an approximately 24 kDa protein which contained three EF-hand calcium-binding motifs and one degenerate EF-hand motif. The cDNA encoded a protein (called Tb-44A) which was approximately twice as large as the other calflagins. The large size resulted from a nearly direct repeat of 186 amino acids. In general, variability among the T. brucei calflagins was greater than observed for related proteins from Trypanosoma cruzi. We demonstrate that this variability resulted from amino acid substitutions at the N-terminus, C-terminal extensions, and duplication of internal segments.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S21-S21
Author(s):  
Andrey Buyan ◽  
Ivan Kulakovskiy ◽  
Sergey Dmitriev

Background: The ribosome is a protein-synthesizing molecular machine composed of four ribosomal RNAs (rRNAs) and dozens of ribosomal proteins. In mammals, the ribosome has a complicated structure with an additional outer layer of rRNA, including large tentacle-like extensions. A number of RNA binding proteins (RBPs) interact with this layer to assist ribosome biogenesis, nuclear export and decay, or to modulate translation. Plenty of methods have been developed in the last decade in order to study such protein-RNA interactions, including RNA pulldown and crosslinking-immunoprecipitation (CLIP) assays. Methods: In the current study, using publicly available data of the enhanced CLIP (eCLIP) experiments for 223 proteins studied in the ENCODE project, we found a number of RBPs that bind rRNAs in human cells. To locate their binding sites in rRNAs, we used a newly developed computational protocol for mapping and evaluation of the eCLIP data with the respect to the repetitive sequences. Results: For two proteins with known ribosomal localization, uS3/RPS3 and uS17/RPS11, the identified sites were in good agreement with structural data, thus validating our approach. Then, we identified rRNA contacts of overall 22 RBPs involved in rRNA processing and ribosome maturation (DDX21, DDX51, DDX52, NIP7, SBDS, UTP18, UTP3, WDR3, and WDR43), translational control during stress (SERBP1, G3BP1, SND1), IRES activity (PCBP1/hnRNPE1), and other translation-related functions. In many cases, the identified proteins interact with the rRNA expansion segments (ES) of the human ribosome pointing to their important role in protein synthesis. Conclusion: Our study identifies a number of RBPs as interacting partners of the human ribosome and sheds light on the role of rRNA expansion segments in translation.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


Sign in / Sign up

Export Citation Format

Share Document