scholarly journals Cdc37p Is Required for Stress-Induced High-Osmolarity Glycerol and Protein Kinase C Mitogen-Activated Protein Kinase Pathway Functionality by Interaction with Hog1p and Slt2p (Mpk1p)

2007 ◽  
Vol 6 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Patricija Hawle ◽  
Danielle Horst ◽  
Jan Paul Bebelman ◽  
Xiao Xian Yang ◽  
Marco Siderius ◽  
...  

ABSTRACT The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity glycerol (HOG) pathway and the cell integrity (protein kinase C) MAPK pathway, mediate adaptive responses to high osmotic and cell wall stresses, respectively. Mutation of the phosphorylation site Ser14 in Cdc37p renders cells sensitive to osmotic stress and cell wall perturbation by calcofluor white. We found that levels of the MAPKs Hog1p and Slt2p (Mpk1p) in cells are reduced in a cdc37-S14A mutant, and consequently downstream responses mediated by Hog1p and Slt2p are compromised. Furthermore, we present evidence that Hog1p and Slt2p both interact in a complex with Cdc37p in vivo, something that has not been reported previously. The interaction of Hsp90, Slt2p, and Hog1p with Cdc37p depends on the phosphorylation status of Cdc37p. In fact, our biochemical data show that the osmosensitive phenotype of the cdc37-S14A mutant is due to the loss of the interaction between Cdc37p, Hog1p, and Hsp90. Likewise, during cell wall stress, the interaction of Slt2p with Cdc37p and Hsp90 is crucial for Slt2p-dependent downstream responses, such as the activation of the transcription factor Rlm1p. Interestingly, phosphorylated Slt2p, but not phosphorylated Hog1p, has an increased affinity for Cdc37p. Together these observations suggest that Cdc37p acts as a regulator of MAPK signaling.

2003 ◽  
Vol 2 (6) ◽  
pp. 1200-1210 ◽  
Author(s):  
Cristina Reinoso-Martín ◽  
Christoph Schüller ◽  
Manuela Schuetzer-Muehlbauer ◽  
Karl Kuchler

ABSTRACT The echinocandin caspofungin is a new antifungal drug that blocks cell wall synthesis through inhibition of β-(1-3)-glucan synthesis. Saccharomyces cerevisiae cells are able to tolerate rather high caspofungin concentrations, displaying high viability at low caspofungin doses. To identify yeast genes implicated in caspofungin tolerance, we performed a genome-wide microarray analysis. Strikingly, caspofungin treatment rapidly induces a set of genes from the protein kinase C (PKC) cell integrity signaling pathway, as well as those required for cell wall maintenance and architecture. The mitogen-activated protein kinase Slt2p is rapidly activated by phosphorylation, triggering signaling through the PKC pathway. Cells lacking genes such as SLT2, BCK1, and PKC1, as well as the caspofungin target gene, FKS1, display pronounced hypersensitivity, demonstrating that the PKC pathway is required for caspofungin tolerance. Notably, the cell surface integrity sensor Wsc1p, but not the sensors Wsc2-4p and Mid2p, is required for sensing caspofungin perturbations. The expression modulation of PKC target genes requires the transcription factor Rlm1p, which controls expression of several cell wall synthesis and maintenance genes. Thus, caspofungin-induced cell wall damage requires Wsc1p as a dedicated sensor to launch a protective response through the activated salvage pathway for de novo cell wall synthesis. Our results establish caspofungin as a specific activator of Slt2p stress signaling in baker's yeast.


1996 ◽  
Vol 16 (12) ◽  
pp. 6752-6764 ◽  
Author(s):  
T Toda ◽  
S Dhut ◽  
G Superti-Furga ◽  
Y Gotoh ◽  
E Nishida ◽  
...  

We have isolated a gene, pmk1+, a third mitogen-activated protein kinase (MAPK) gene homolog from the fission yeast Schizosaccharomyces pombe. The predicted amino acid sequence shows the most homology (63 to 65% identity) to those of budding yeast Saccharomyces Mpk1 and Candida Mkc1. The Pmk1 protein contains phosphorylated tyrosines, and the level of tyrosine phosphorylation was increased in the dsp1 mutant which lacks an attenuating phosphatase for Pmk1. The level of tyrosine phosphorylation appears constant during hypotonic or heat shock treatment. The cells with pmk1 deleted (delta pmk1) are viable but show various defective phenotypes, including cell wall weakness, abnormal cell shape, a cytokinesis defect, and altered sensitivities to cations, such as hypersensitivity to potassium and resistance to sodium. Consistent with a high degree of conservation of amino acid sequence, multicopy plasmids containing the MPK1 gene rescued the defective phenotypes of the delta pmk1 mutant. The frog MAPK gene also suppressed the pmk1 disruptant. The results of genetic analysis indicated that Pmk1 lies on a novel MAPK pathway which does not overlap functionally with the other two MAPK pathways, the Spk1-dependent mating signal pathway and Sty1/Spc1/Phh1-dependent stress-sensing pathway. In Saccharomyces cerevisiae, Mpk1 is involved in cell wall integrity and functions downstream of the protein kinase C homolog. In contrast, in S. pombe, Pmk1 may not act in a linear manner with respect to fission yeast protein kinase C homologs. Interestingly, however, these two pathways are not independent; instead, they regulate cell integrity in a coordinate manner.


2009 ◽  
Vol 8 (8) ◽  
pp. 1235-1249 ◽  
Author(s):  
Elvira Román ◽  
Fabien Cottier ◽  
Joachim F. Ernst ◽  
Jesús Pla

ABSTRACT We have characterized the role that the Msb2 protein plays in the fungal pathogen Candida albicans by the use of mutants defective in the putative upstream components of the HOG pathway. Msb2, in cooperation with Sho1, controls the activation of the Cek1 mitogen-activated protein kinase under conditions that damage the cell wall, thus defining Msb2 as a signaling element of this pathway in the fungus. msb2 mutants display altered sensitivity to Congo red, caspofungin, zymolyase, or tunicamycin, indicating that this protein is involved in cell wall biogenesis. Msb2 (as well as Sho1 and Hst7) is involved in the transmission of the signal toward Cek1 mediated by the Cdc42 GTPase, as revealed by the use of activated alleles (Cdc42G12V) of this protein. msb2 mutants have a stronger defective invasion phenotype than sho1 mutants when tested on certain solid media that use mannitol or sucrose as a carbon source or under hypoxia. Interestingly, Msb2 contributes to growth under conditions of high osmolarity when both branches of the HOG pathway are altered, as triple ssk1 msb2 sho1 mutants (but not any single or double mutant) are osmosensitive. However, this phenomenon is independent of the presence of Hog1, as Hog1 phosphorylation, Hog1 translocation to the nucleus, and glycerol accumulation are not affected in this mutant following an osmotic shock. These results reveal essential functions in morphogenesis, invasion, cell wall biogenesis, and growth under conditions of high osmolarity for Msb2 in C. albicans and suggest the divergence and specialization of this signaling pathway in filamentous fungi.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Lilian Pereira Silva ◽  
Dean Frawley ◽  
Leandro José de Assis ◽  
Ciara Tierney ◽  
Alastair B. Fleming ◽  
...  

ABSTRACT The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen. IMPORTANCE Aspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.


2019 ◽  
Vol 85 (10) ◽  
Author(s):  
Asumi Sugahara ◽  
Akira Yoshimi ◽  
Fumio Shoji ◽  
Tomonori Fujioka ◽  
Kiyoshi Kawai ◽  
...  

ABSTRACTThe cell wall integrity signaling (CWIS) pathway is involved in fungal cell wall biogenesis. This pathway is composed of sensor proteins, protein kinase C (PKC), and the mitogen-activated protein kinase (MAPK) pathway, and it controls the transcription of many cell wall-related genes. PKC plays a pivotal role in this pathway; deficiencies in PkcA in the model filamentous fungusAspergillus nidulansand in MgPkc1p in the rice blast fungusMagnaporthe griseaare lethal. This suggests that PKC in filamentous fungi is a potential target for antifungal agents. In the present study, to search for MgPkc1p inhibitors, we carried outin silicoscreening by three-dimensional (3D) structural modeling and performed growth inhibition tests forM. griseaon agar plates. From approximately 800,000 candidate compounds, we selected Z-705 and evaluated its inhibitory activity against chimeric PKC expressed inSaccharomyces cerevisiaecells in which the kinase domain of nativeS. cerevisiaePKC was replaced with those of PKCs of filamentous fungi. Transcriptional analysis ofMLP1, which encodes a downstream factor of PKC inS. cerevisiae, and phosphorylation analysis of the mitogen-activated protein kinase (MAPK) Mpk1p, which is activated downstream of PKC, revealed that Z-705 specifically inhibited PKCs of filamentous fungi. Moreover, the inhibitory activity of Z-705 was similar to that of a well-known PKC inhibitor, staurosporine. Interestingly, Z-705 inhibited melanization induced by cell wall stress inM. grisea. We discuss the relationships between PKC and melanin biosynthesis.IMPORTANCEA candidate inhibitor of filamentous fungal protein kinase C (PKC), Z-705, was identified byin silicoscreening. A screening system to evaluate the effects of fungal PKC inhibitors was constructed inSaccharomyces cerevisiae. Using this system, we found that Z-705 is highly selective for filamentous fungal PKC in comparison withS. cerevisiaePKC. Analysis of theAGS1mRNA level, which is regulated by Mps1p mitogen-activated protein kinase (MAPK) via PKC, in the rice blast fungusMagnaporthe grisearevealed that Z-705 had a PKC inhibitory effect comparable to that of staurosporine. Micafungin induced hyphal melanization inM. grisea, and this melanization, which is required for pathogenicity ofM. grisea, was inhibited by PKC inhibition by both Z-705 and staurosporine. The mRNA levels of4HNR,3HNR, andSCD1, which are essential for melanization inM. grisea, were suppressed by both PKC inhibitors.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Taehyun Kim ◽  
David J. Hinton ◽  
Doo-Sup Choi

Alzheimer’s disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloidβ-peptide (Aβ) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα) via the activation ofα-secretase activity, which reduces the accumulation of pathogenic Aβlevels in the brain. Moreover, activation of PKCαand mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβdegrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediatedviathe MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβlevels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβproduction and clearance and its implication in AD.


Sign in / Sign up

Export Citation Format

Share Document