scholarly journals Complete Genome Sequence of a Polypropylene Glycol-Degrading Strain, Microbacterium sp. No. 7

2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Yoshiyuki Ohtsubo ◽  
Yuji Nagata ◽  
Mitsuru Numata ◽  
Kieko Tsuchikane ◽  
Akira Hosoyama ◽  
...  

Microbacterium (formerly Corynebacterium ) sp. No. 7 was isolated from activated sludge as a polypropylene glycol (PPG)-assimilating bacterial strain. Its oxidative PPG degradation has been proposed on the basis of PPG dehydrogenase activity and the metabolic products. Here, we report the complete genome sequence of Microbacterium sp. No. 7. The genome of the strain No. 7 is composed of a 4,599,046-bp circular chromosome and two linear plasmids. The whole finishing was conducted in silico with aids of the computational tools GenoFinisher and AceFileViewer. Strain No. 7 is available from the Biological Resource Center, National Institute of Technology and Evaluation (NITE) (Tokyo, Japan).

2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Yoshiyuki Ohtsubo ◽  
Yuji Nagata ◽  
Mitsuru Numata ◽  
Kieko Tsuchikane ◽  
Akira Hosoyama ◽  
...  

Strain EY-1 was isolated from a microbial consortium growing on a random polymer of ethylene oxide and propylene oxide. Strain EY-1 grew on polyethylene glycol and polypropylene glycol and identified as Sphingopyxis macrogoltabida . Here, we report the complete genome sequence of Sphingopyxis macrogoltabida EY-1. The genome of strain EY-1 is comprised of a 4.76-Mb circular chromosome, and five plasmids. The whole finishing was conducted in silico , with aids of computational tools GenoFinisher and AceFileViewer. Strain EY-1 is available from Biological Resource Center, National Institute of Technology and Evaluation (Tokyo, Japan) (NITE).


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Yoshiyuki Ohtsubo ◽  
Azusa Moriya ◽  
Hiromi Kato ◽  
Natsumi Ogawa ◽  
Yuji Nagata ◽  
...  

The phenanthrene-degrading Burkholderia sp. HB-1 was isolated from a phenanthrene-enrichment culture seeded with a pristine farm soil sample. We report the complete genome sequence of HB-1, which has been deposited to the stock culture (NBRC 110738) at Biological Resource Center, National Institute of Technology and Evaluation (NITE), Tokyo, Japan. The genome of strain HB-1 comprises two circular chromosomes of 4.1 Mb and 3.1 Mb. The finishing was facilitated by the computational tools GenoFinisher, AceFileViewer, and ShortReadManager.


2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Yoshiyuki Ohtsubo ◽  
Yuji Nagata ◽  
Mitsuru Numata ◽  
Kieko Tsuchikane ◽  
Akira Hosoyama ◽  
...  

Strain 113P3 was isolated from activated sludge and identified as a polyvinyl alcohol (PVA)-degrading Pseudomonas species; it was later reidentified as Sphingopyxis species. Only three genes are directly relevant to the metabolism of PVA and comprise the pva operon, which was deposited as accession no. AB190228. Here, we report the complete genome sequence of strain 113P3, which has been conserved as a stock culture (NBRC 111507) at the Biological Resource Center, National Institute of Technology and Evaluation (NITE) (Tokyo, Japan). The genome of strain 113P3 is composed of a 4.4-Mb circular chromosome and a 243-kb plasmid. The whole finishing was conducted in silico except for four PCRs. The sequence corresponding to AB190288 exists on the chromosome.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Yoshiyuki Ohtsubo ◽  
Yuji Nagata ◽  
Mitsuru Numata ◽  
Kieko Tsuchikane ◽  
Akira Hosoyama ◽  
...  

Sphingopyxis macrogoltabida strain 203, the type strain of the species, grew on polyethylene glycol (PEG) and has been deposited to the stock culture at the Biological Resource Center, National Institute of Technology and Evaluation (NITE), under the number NBRC 15033. Here, we report the complete genome sequence of strain NBRC 15033. Unfortunately, genes for PEG degradation were missing.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
So-Ra Han ◽  
Byeollee Kim ◽  
Jong Hwa Jang ◽  
Hyun Park ◽  
Tae-Jin Oh

Abstract Background The Arthrobacter group is a known set of bacteria from cold regions, the species of which are highly likely to play diverse roles at low temperatures. However, their survival mechanisms in cold regions such as Antarctica are not yet fully understood. In this study, we compared the genomes of 16 strains within the Arthrobacter group, including strain PAMC25564, to identify genomic features that help it to survive in the cold environment. Results Using 16 S rRNA sequence analysis, we found and identified a species of Arthrobacter isolated from cryoconite. We designated it as strain PAMC25564 and elucidated its complete genome sequence. The genome of PAMC25564 is composed of a circular chromosome of 4,170,970 bp with a GC content of 66.74 % and is predicted to include 3,829 genes of which 3,613 are protein coding, 147 are pseudogenes, 15 are rRNA coding, and 51 are tRNA coding. In addition, we provide insight into the redundancy of the genes using comparative genomics and suggest that PAMC25564 has glycogen and trehalose metabolism pathways (biosynthesis and degradation) associated with carbohydrate active enzyme (CAZymes). We also explain how the PAMC26654 produces energy in an extreme environment, wherein it utilizes polysaccharide or carbohydrate degradation as a source of energy. The genetic pattern analysis of CAZymes in cold-adapted bacteria can help to determine how they adapt and survive in such environments. Conclusions We have characterized the complete Arthrobacter sp. PAMC25564 genome and used comparative analysis to provide insight into the redundancy of its CAZymes for potential cold adaptation. This provides a foundation to understanding how the Arthrobacter strain produces energy in an extreme environment, which is by way of CAZymes, consistent with reports on the use of these specialized enzymes in cold environments. Knowledge of glycogen metabolism and cold adaptation mechanisms in Arthrobacter species may promote in-depth research and subsequent application in low-temperature biotechnology.


2018 ◽  
Vol 7 (14) ◽  
Author(s):  
Min-Jung Kim ◽  
Hye Sun Kim ◽  
Sam Churl Kim ◽  
Youn-Sig Kwak

Lactobacillus brevis strain 100D8 was isolated from rye silage and showed rapid acidification ability in vitro and antifungal activity against mycotoxin-producing fungi. We report here the complete genome sequence of L. brevis strain 100D8, which has a circular chromosome (2,351,988 bp, 2,304 coding sequences [CDSs]) and three plasmids (45,061 bp, 57 CDSs; 40,740 bp, 40 CDSs; and 39,943 bp, 57 CDSs).


2021 ◽  
Vol 10 (41) ◽  
Author(s):  
Anna Maria Cuppone ◽  
Lorenzo Colombini ◽  
Valeria Fox ◽  
David Pinzauti ◽  
Francesco Santoro ◽  
...  

The complete genome sequence of Streptococcus pneumoniae strain Rx1, a Hex mismatch repair-deficient standard transformation recipient, was obtained by combining Nanopore and Illumina sequencing technologies. The genome consists of a 2.03-Mb circular chromosome, with 2,054 open reading frames and a GC content of 39.72%.


2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Kentaro Miyazaki ◽  
Hikaru Suenaga ◽  
Mamoru Oshiki ◽  
Shuichi Kawano ◽  
Toshikazu Fukushima

ABSTRACT A thiocyanate-degrading bacterium, Thiohalobacter sp. strain COW1, was isolated from activated sludge treating coke oven wastewater, and the complete genome sequence was determined. COW1 contained a single circular chromosome (3.23 Mb; G+C content, 63.4%) in which 2,788 protein-coding genes, 39 tRNA genes, and 3 rRNA genes were identified.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Prasad Thomas ◽  
Mostafa Y. Abdel-Glil ◽  
Anne Busch ◽  
Lothar H. Wieler ◽  
Inga Eichhorn ◽  
...  

Clostridium limosum can be found in soil and the intestinal tract of animals. In 2014, C. limosum was isolated from a suspected blackleg outbreak in cattle in Schleswig-Holstein, Germany. We present a complete genome sequence of a C. limosum strain represented by a circular chromosome and three plasmids.


2019 ◽  
Vol 8 (48) ◽  
Author(s):  
Jun Young Choi ◽  
Kunjoong Lee ◽  
Pyung Cheon Lee

The novel species Deinococcus sp. strain AJ005, isolated from King George Island, synthesizes a red carotenoid. Its complete genome is made up of a single circular chromosome (3,380,712 bp, 64.2% G+C content) and four circular plasmids.


Sign in / Sign up

Export Citation Format

Share Document