scholarly journals Comparative Analysis of EspF Variants in Inhibition of Escherichia coli Phagocytosis by Macrophages and Inhibition of E. coli Translocation through Human- and Bovine-Derived M Cells

2011 ◽  
Vol 79 (11) ◽  
pp. 4716-4729 ◽  
Author(s):  
Amin Tahoun ◽  
Gabriella Siszler ◽  
Kevin Spears ◽  
Sean McAteer ◽  
Jai Tree ◽  
...  

ABSTRACTThe EspF protein is secreted by the type III secretion system of enteropathogenic and enterohemorrhagicEscherichia coli(EPEC and EHEC, respectively). EspF sequences differ between EHEC O157:H7, EHEC O26:H11, and EPEC O127:H6 in terms of the number of SH3-binding polyproline-rich repeats and specific residues in these regions, as well as residues in the amino domain involved in cellular localization. EspFO127is important for the inhibition of phagocytosis by EPEC and also limits EPEC translocation through antigen-sampling cells (M cells). EspFO127has been shown to have effects on cellular organelle function and interacts with several host proteins, including N-WASP and sorting nexin 9 (SNX9). In this study, we compared the capacities of differentespFalleles to inhibit (i) bacterial phagocytosis by macrophages, (ii) translocation through an M-cell coculture system, and (iii) uptake by and translocation through cultured bovine epithelial cells. TheespFgene fromE. coliserotype O157 (espFO157) allele was significantly less effective at inhibiting phagocytosis and also had reduced capacity to inhibitE. colitranslocation through a human-derivedin vitroM-cell coculture system in comparison toespFO127andespFO26. In contrast,espFO157was the most effective allele at restricting bacterial uptake into and translocation through primary epithelial cells cultured from the bovine terminal rectum, the predominant colonization site of EHEC O157 in cattle and a site containing M-like cells. Although LUMIER binding assays demonstrated differences in the interactions of the EspF variants with SNX9 and N-WASP, we propose that other, as-yet-uncharacterized interactions contribute to the host-based variation in EspF activity demonstrated here.

2012 ◽  
Vol 80 (3) ◽  
pp. 914-920 ◽  
Author(s):  
Sonja J. Lloyd ◽  
Jennifer M. Ritchie ◽  
Maricarmen Rojas-Lopez ◽  
Carla A. Blumentritt ◽  
Vsevolod L. Popov ◽  
...  

Escherichia coliO157:H7 causes food and waterborne enteric infections that can result in hemorrhagic colitis and life-threatening hemolytic uremic syndrome. Intimate adherence of the bacteria to intestinal epithelial cells is mediated by intimin, butE. coliO157:H7 also possess several other putative adhesins, including curli and two operons that encode long polar fimbriae (Lpf). To assess the importance of Lpf for intestinal colonization, we performed competition experiments betweenE. coliO157:H7 and an isogenic ΔlpfA1ΔlpfA2double mutant in the infant rabbit model. The mutant was outcompeted in the ileum, cecum, and midcolon, suggesting that Lpf contributes to intestinal colonization. In contrast, the ΔlpfA1ΔlpfA2mutant showed increased adherence to colonic epithelial cellsin vitro. Transmission electron microscopy revealed curli-like structures on the surface of the ΔlpfA1ΔlpfA2mutant, and the presence of curli was confirmed by Congo red binding, immunogold-labeling electron microscopy, immunoblotting, and quantitative real-time reverse transcription-PCR (qRT-PCR) measuringcsgAexpression. However, deletion ofcsgA, which encodes the major curli subunit, does not appear to affect intestinal colonization. In addition to suggesting that Lpf can contribute to EHEC intestinal colonization, our observations indicate that the regulatory pathways governing the expression of Lpf and curli are interdependent.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Amin Zargar ◽  
David N. Quan ◽  
Karen K. Carter ◽  
Min Guo ◽  
Herman O. Sintim ◽  
...  

ABSTRACTThere have been many studies on the relationship between nonpathogenic bacteria and human epithelial cells; however, the bidirectional effects of the secretomes (secreted substances in which there is no direct bacterium-cell contact) have yet to be fully investigated. In this study, we use a transwell model to explore the transcriptomic effects of bacterial secretions from two different nonpathogenicEscherichia colistrains on the human colonic cell line HCT-8 using next-generation transcriptome sequencing (RNA-Seq).E. coliBL21 and W3110, while genetically very similar (99.1% homology), exhibit key phenotypic differences, including differences in their production of macromolecular structures (e.g., flagella and lipopolysaccharide) and in their secretion of metabolic byproducts (e.g., acetate) and signaling molecules (e.g., quorum-sensing autoinducer 2 [AI-2]). After analysis of differential epithelial responses to the respective secretomes, this study shows for the first time that a nonpathogenic bacterial secretome activates the NF-κB-mediated cytokine-cytokine receptor pathways while also upregulating negative-feedback components, including the NOD-like signaling pathway. Because of AI-2's relevance as a bacterium-bacterium signaling molecule and the differences in its secretion rates between these strains, we investigated its role in HCT-8 cells. We found that the expression of the inflammatory cytokine interleukin 8 (IL-8) responded to AI-2 with a pattern of rapid upregulation before subsequent downregulation after 24 h. Collectively, these data demonstrate that secreted products from nonpathogenic bacteria stimulate the transcription of immune-related biological pathways, followed by the upregulation of negative-feedback elements that may serve to temper the inflammatory response.IMPORTANCEThe symbiotic relationship between the microbiome and the host is important in the maintenance of human health. There is a growing need to further understand the nature of these relationships to aid in the development of homeostatic probiotics and also in the design of novel antimicrobial therapeutics. To our knowledge, this is the first global-transcriptome study of bacteria cocultured with human epithelial cells in a model to determine the transcriptional effects of epithelial cells in which epithelial and bacterial cells are allowed to “communicate” with each other only through diffusible small molecules and proteins. By beginning to demarcate the direct and indirect effects of bacteria on the gastrointestinal (GI) tract, two-way interkingdom communication can potentially be mediated between host and microbe.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Olaya Rendueles ◽  
Laetitia Travier ◽  
Patricia Latour-Lambert ◽  
Thierry Fontaine ◽  
Julie Magnus ◽  
...  

ABSTRACTBacterial biofilms often form multispecies communities in which complex but ill-understood competition and cooperation interactions occur. In light of the profound physiological modifications associated with this lifestyle, we hypothesized that the biofilm environment might represent an untapped source of natural bioactive molecules interfering with bacterial adhesion or biofilm formation. We produced cell-free solutions extracted fromin vitromature biofilms formed by 122 naturalEscherichia coliisolates, and we screened these biofilm extracts for antiadhesion molecules active on a panel of Gram-positive and Gram-negative bacteria. Using this approach, we showed that 20% of the tested biofilm extracts contained molecules that antagonize bacterial growth or adhesion. We characterized a compound, produced by a commensal animalE. colistrain, for which activity is detected only in biofilm extract. Biochemical and genetic analyses showed that this compound corresponds to a new type of released high-molecular-weight polysaccharide whose biofilm-associated production is regulated by the RfaH protein. We demonstrated that the antiadhesion activity of this polysaccharide was restricted to Gram-positive bacteria and that its production reduced susceptibility to invasion and provided rapid exclusion ofStaphylococcus aureusfrom mixedE. coliandS. aureusbiofilms. Our results therefore demonstrate that biofilms contain molecules that contribute to the dynamics of mixed bacterial communities and that are not or only poorly detected in unconcentrated planktonic supernatants. Systematic identification of these compounds could lead to strategies that limit pathogen surface colonization and reduce the burden associated with the development of bacterial biofilms on medical devices.IMPORTANCEWe sought to demonstrate that bacterial biofilms are reservoirs for unknown molecules that antagonize bacterial adhesion. The use of natural strains representative ofEscherichia colispecies biodiversity showed that nonbiocidal antiadhesion polysaccharides are frequently found in mature biofilm extracts (bacterium-free suspensions which contain soluble molecules produced within the biofilm). Release of an antiadhesion polysaccharide confers a competitive advantage upon the producing strain against clinically relevant pathogens such asStaphylococcus aureus. Hence, exploring the biofilm environment provides a better understanding of bacterial interactions within complex communities and could lead to improved control of pathogen colonization.


2015 ◽  
Vol 81 (10) ◽  
pp. 3561-3570 ◽  
Author(s):  
Timothy J. Johnson ◽  
Randall S. Singer ◽  
Richard E. Isaacson ◽  
Jessica L. Danzeisen ◽  
Kevin Lang ◽  
...  

ABSTRACTIncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensalEscherichia colihost. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containingE. colifrom pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containingE. coliin pig feces (P< 0.001) and increased movement of the IncA/C plasmid to other indigenousE. colihosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other thanE. coli.In vitrocompetition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage inE. coliandSalmonella.In vitrotransfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracyclinein vitrostrongly selected for IncA/C plasmid-containingE. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2016 ◽  
Vol 82 (21) ◽  
pp. 6326-6334 ◽  
Author(s):  
Christina Böhnlein ◽  
Jan Kabisch ◽  
Diana Meske ◽  
Charles M. A. P. Franz ◽  
Rohtraud Pichner

ABSTRACTIn 2011, one of the world's largest outbreaks of hemolytic-uremic syndrome (HUS) occurred, caused by a rareEscherichia coliserotype, O104:H4, that shared the virulence profiles of Shiga toxin-producingE. coli(STEC)/enterohemorrhagicE. coli(EHEC) and enteroaggregativeE. coli(EAEC). The persistence and fitness factors of the highly virulent EHEC/EAEC O104:H4 strain, grown either in food orin vitro, were compared with those ofE. coliO157 outbreak-associated strains. The log reduction rates of the different EHEC strains during the maturation of fermented sausages were not significantly different. Both the O157:NM and O104:H4 serotypes could be shown by qualitative enrichment to be present after 60 days of sausage storage. Moreover, the EHEC/EAEC O104:H4 strain appeared to be more viable thanE. coliO157:H7 under conditions of decreased pH and in the presence of sodium nitrite. Analysis of specific EHEC strains in experiments with an EHEC inoculation cocktail showed a dominance of EHEC/EAEC O104:H4, which could be isolated from fermented sausages for 60 days. Inhibitory activities of EHEC/EAEC O104:H4 toward severalE. colistrains, including serotype O157 strains, could be determined. Our study suggests that EHEC/EAEC O104:H4 is well adapted to the multiple adverse conditions occurring in fermented raw sausages. Therefore, it is strongly recommended that STEC strain cocktails composed of several serotypes, instead ofE. coliO157:H7 alone, be used in food risk assessments. The enhanced persistence of EHEC/EAEC O104:H4 as a result of its robustness, as well as the production of bacteriocins, may account for its extraordinary virulence potential.IMPORTANCEIn 2011, a severe outbreak caused by an EHEC/EAEC serovar O104:H4 strain led to many HUS sequelae. In this study, the persistence of the O104:H4 strain was compared with those of other outbreak-relevant STEC strains under conditions of fermented raw sausage production. Both O157:NM and O104:H4 strains could survive longer during the production of fermented sausages thanE. coliO157:H7 strains.E. coliO104:H4 was also shown to be well adapted to the multiple adverse conditions encountered in fermented sausages, and the secretion of a bacteriocin may explain the competitive advantage of this strain in an EHEC strain cocktail. Consequently, this study strongly suggests that enhanced survival and persistence, and the presumptive production of a bacteriocin, may explain the increased virulence of the O104:H4 outbreak strain. Furthermore, this strain appears to be capable of surviving in a meat product, suggesting that meat should not be excluded as a source of potentialE. coliO104:H4 infection.


2019 ◽  
Vol 244 (7) ◽  
pp. 554-564 ◽  
Author(s):  
Ana Klisuric ◽  
Benjamin Thierry ◽  
Ludivine Delon ◽  
Clive A Prestidge ◽  
Rachel J Gibson

M cells are an epithelial cell population found in the follicle-associated epithelium overlying gut-associated lymphoid tissues. They are specialized in the transcytosis of luminal antigens. Their transcytotic capacity and location in an immunocompetent environment has prompted the study of these cells as possible targets for oral drug delivery systems. Currently, the models most commonly used to study M cells are restricted to in vivo experiments conducted in mice, and in vitro studies conducted in models comprised either of primary epithelial cells or established cell lines of murine or human origin. In vitro models of the follicle-associated epithelium can be constructed in several ways. Small intestinal Lgr5+ stem cells can be cultured into a 3D organoid structure where M cells are induced with RANKL administration. Additionally, in vitro models containing an “M cell-like” population can be obtained through co-culturing intestinal epithelial cells with cells of lymphocytic origin to induce the M cell phenotype. The evaluation of the efficiency of the variations of these models and their relevance to the in vivo human system is hampered by the lack of a universal M cell marker. This issue has also hindered the advancement of M cell-specific targeting approaches aimed at improving the bioavailability of orally administered compounds. This critical review discusses the different approaches utilized in the literature to identify M cells, their efficiency, reliability and relevance, in the context of commonly used models of the follicle-associated epithelium. The outcome of this review is a clearly defined and universally recognized criteria for the assessment of the relevance of models of the follicle-associated models currently used. Impact statement The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Anne-Claire Mahérault ◽  
Harry Kemble ◽  
Mélanie Magnan ◽  
Benoit Gachet ◽  
David Roche ◽  
...  

ABSTRACT Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.


2014 ◽  
Vol 82 (5) ◽  
pp. 1801-1812 ◽  
Author(s):  
Sylvia Kleta ◽  
Marcel Nordhoff ◽  
Karsten Tedin ◽  
Lothar H. Wieler ◽  
Rafal Kolenda ◽  
...  

ABSTRACTEnteropathogenicEscherichia coli(EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probioticE. colistrain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While bothin vitroandin vivostudies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenicE. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenicE. coli(aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.


Sign in / Sign up

Export Citation Format

Share Document