scholarly journals Lipopolysaccharide (LPS)-Binding Synthetic Peptides Derived from Serum Amyloid P Component Neutralize LPS

1999 ◽  
Vol 67 (6) ◽  
pp. 2790-2796 ◽  
Author(s):  
Carla J. C. de Haas ◽  
Ruurd van der Zee ◽  
Barry Benaissa-Trouw ◽  
Kok P. M. van Kessel ◽  
Jan Verhoef ◽  
...  

ABSTRACT Lipopolysaccharide (LPS) is the major mediator of gram-negative septic shock. Molecules that bind LPS and neutralize its toxic effects could have important clinical applications. We showed that serum amyloid P component (SAP) neutralizes LPS. A SAP-derived peptide, consisting of amino acids 27 to 39, inhibited LPS-mediated effects in the presence of human blood. In this study, we used a pepscan of overlapping 15-mer peptides and distinguished two additional LPS-binding regions within the SAP molecule, identified in the regions spanning amino acids 61 to 75 and 186 to 200. The corresponding SAP-derived peptides, pep61-75 and pep186-200, inhibited the binding of fluorescein isothiocyanate-labeled LPS to monocytes as efficiently as a bactericidal/permeability-increasing protein (BPI)-derived 15-mer peptide comprising amino acids 85 to 99. The same SAP-derived peptides very potently inhibited LPS-induced priming of phagocytes in human blood. Also, SAP-derived pep186-200 caused a prolonged survival of actinomycin D-sensitized mice treated with LPS to induce septic shock, indicating a potential use of this peptide in the defense against serious gram-negative sepsis in humans.

2000 ◽  
Vol 68 (9) ◽  
pp. 4954-4960 ◽  
Author(s):  
Carla J. C. de Haas ◽  
Miriam J. J. G. Poppelier ◽  
Kok P. M. van Kessel ◽  
Jos A. G. van Strijp

ABSTRACT Lipopolysaccharide (LPS) is an amphipathic macromolecule that is highly aggregated in aqueous preparations. LPS-binding protein (LBP) catalyzes the transfer of single LPS molecules, segregated from an LPS aggregate, to high-density lipoproteins (HDL), which results in the neutralization of LPS. When fluorescein isothiocyanate-labeled LPS (FITC-LPS) is used, this transfer of LPS monomers to HDL can be measured as an increase in fluorescence due to dequenching of FITC-LPS. Recently, serum amyloid P component (SAP) was shown to neutralize LPS in vitro, although only in the presence of low concentrations of LBP. In this study, we show that SAP prevented HDL-mediated dequenching of FITC-LPS, even in the presence of high concentrations of LBP. Human bactericidal/permeability-increasing protein (BPI), a very potent LPS-binding and -neutralizing protein, also prevented HDL-mediated dequenching of FITC-LPS. Furthermore, SAP inhibited HDL-mediated neutralization of both rough and smooth LPS in a chemiluminescence assay quantifying the LPS-induced priming of neutrophils in human blood. SAP bound both isolated HDL and HDL in serum. Using HDL-coated magnetic beads prebound with SAP, we demonstrated that HDL-bound SAP prevented the binding of LPS to HDL. We suggest that SAP, by preventing LPS binding to HDL, plays a regulatory role, balancing the amount of LPS that, via HDL, is directed to the adrenal glands.


2001 ◽  
Vol 276 (45) ◽  
pp. 41576-41579 ◽  
Author(s):  
Tsuyoshi Kimura ◽  
Shinobu Tani ◽  
Yoh-ichi Matsumoto ◽  
Tae Takeda

1987 ◽  
Vol 43 (a1) ◽  
pp. C10-C10
Author(s):  
G. Oliva ◽  
B. P. O'Hara ◽  
S. Wood ◽  
H. White ◽  
M. B. Pepys ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document