scholarly journals Inactivation of the ciaH Gene in Streptococcus mutans Diminishes Mutacin Production and Competence Development, Alters Sucrose-Dependent Biofilm Formation, and Reduces Stress Tolerance

2004 ◽  
Vol 72 (8) ◽  
pp. 4895-4899 ◽  
Author(s):  
Fengxia Qi ◽  
Justin Merritt ◽  
Renate Lux ◽  
Wenyuan Shi

ABSTRACT Many clinical isolates of Streptococcus mutans produce peptide antibiotics called mutacins. Mutacin production may play an important role in the ecology of S. mutans in dental plaque. In this study, inactivation of a histidine kinase gene, ciaH, abolished mutacin production. Surprisingly, the same mutation also diminished competence development, stress tolerance, and sucrose-dependent biofilm formation.

2016 ◽  
Vol 198 (7) ◽  
pp. 1087-1100 ◽  
Author(s):  
Gursonika Binepal ◽  
Kamal Gill ◽  
Paula Crowley ◽  
Martha Cordova ◽  
L. Jeannine Brady ◽  
...  

ABSTRACTPotassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+and a variety of K+transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+acquisition inStreptococcus mutansand the importance of K+homeostasis for its virulence attributes. TheS. mutansgenome harbors four putative K+transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+cotransporter (GlnQHMP), and a channel-like K+transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation inS. mutans. The functionality of the Trk2 system was confirmed by complementing anEscherichia coliTK2420 mutant strain, which resulted in significant K+accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response ofS. mutansto environment stresses.IMPORTANCEBiofilm formation and stress tolerance are important virulence properties of caries-causingStreptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment ofS. mutans. K+is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+transporters inS. mutans. We identified the most important system for K+homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+for the activity of biofilm-forming enzymes, which explains why such high levels of K+would favor biofilm formation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10165
Author(s):  
Nucharee Juntarachot ◽  
Sasithorn Sirilun ◽  
Duangporn Kantachote ◽  
Phakkharawat Sittiprapaporn ◽  
Piyachat Tongpong ◽  
...  

Background The accumulation of plaque causes oral diseases. Dental plaque is formed on teeth surfaces by oral bacterial pathogens, particularly Streptococcus mutans, in the oral cavity. Dextranase is one of the enzymes involved in antiplaque accumulation as it can prevent dental caries by the degradation of dextran, which is a component of plaque biofilm. This led to the idea of creating toothpaste containing dextranase for preventing oral diseases. However, the dextranase enzyme must be stable in the product; therefore, encapsulation is an attractive way to increase the stability of this enzyme. Methods The activity of food-grade fungal dextranase was measured on the basis of increasing ratio of reducing sugar concentration, determined by the reaction with 3, 5-dinitrosalicylic acid reagent. The efficiency of the dextranase enzyme was investigated based on its minimal inhibitory concentration (MIC) against biofilm formation by S. mutans ATCC 25175. Box-Behnken design (BBD) was used to study the three factors affecting encapsulation: pH, calcium chloride concentration, and sodium alginate concentration. Encapsulation efficiency (% EE) and the activity of dextranase enzyme trapped in alginate beads were determined. Then, the encapsulated dextranase in alginate beads was added to toothpaste base, and the stability of the enzyme was examined. Finally, sensory test and safety evaluation of toothpaste containing encapsulated dextranase were done. Results The highest activity of the dextranase enzyme was 4401.71 unit/g at a pH of 6 and 37 °C. The dextranase at its MIC (4.5 unit/g) showed strong inhibition against the growth of S. mutans. This enzyme at 1/2 MIC also showed a remarkable decrease in biofilm formation by S. mutans. The most effective condition of dextranase encapsulation was at a pH of 7, 20% w/v calcium chloride and 0.85% w/v sodium alginate. Toothpaste containing encapsulated dextranase alginate beads produced under suitable condition was stable after 3 months of storage, while the sensory test of the product was accepted at level 3 (like slightly), and it was safe. Conclusion This research achieved an alternative health product for oral care by formulating toothpaste with dextranase encapsulated in effective alginate beads to act against cariogenic bacteria, like S. mutants, by preventing dental plaque.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kassapa Ellepola ◽  
Xiaochang Huang ◽  
Ryan P. Riley ◽  
Jacob P. Bitoun ◽  
Zezhang Tom Wen

Streptococcus mutans appears to possess a sole iron-sulfur (Fe-S) cluster biosynthesis system encoded by the sufCDSUB cluster. This study was designed to examine the role of sufCDSUB in S. mutans physiology. Allelic exchange mutants deficient of the whole sufCDSUB cluster and in individual genes were constructed. Compared to the wild-type, UA159, the sufCDSUB-deficient mutant, Δsuf::kanr, had a significantly reduced growth rate, especially in medium with the absence of isoleucine, leucine or glutamate/glutamine, amino acids that require Fe-S clusters for biosynthesis and when grown with medium adjusted to pH 6.0 and under oxidative and nitrosative stress conditions. Relative to UA159, Δsuf::kanr had major defects in stress tolerance responses with reduced survival rate of > 2-logs following incubation at low pH environment or after hydrogen peroxide challenge. When compared to UA159, Δsuf::kanr tended to form aggregates in broth medium and accumulated significantly less biofilm. As shown by luciferase reporter fusion assays, the expression of sufCDSUB was elevated by > 5.4-fold when the reporter strain was transferred from iron sufficient medium to iron-limiting medium. Oxidative stress induced by methyl viologen increased sufCDSUB expression by > 2-fold, and incubation in a low pH environment led to reduction of sufCDSUB expression by > 7-fold. These results suggest that lacking of SufCDSUB in S. mutans causes major defects in various cellular processes of the deficient mutant, including growth, stress tolerance responses and biofilm formation. In addition, the viability of the deficient mutant also suggests that SUF, the sole Fe-S cluster machinery identified is non-essential in S. mutans, which is not known in any other bacterium lacking the NIF and/or ISC system. However, how the bacterium compensates the Fe-S deficiency and if any novel Fe-S assembly systems exist in this bacterium await further investigation.


Author(s):  
Agnes Linggriani ◽  
Mochamad Fahlevi Rizal ◽  
Eva Fauziah ◽  
Margaretha Suharsini

 Objective: This study was conducted to analyze the effects obtained with different concentrations (0.5 and 0.1%) of propolis flavonoids on in vitro biofilm formation by clinical Streptococcus mutans strains isolated from children’s dental plaque.Materials and Methods: S. mutans isolated from children’s dental plaque was assayed for biofilm formation in 96-microwell plates using crystal violet.Results: The effects on S. mutans biofilm formation were the same for propolis flavonoids administered at concentrations of 0.05 and 0.1% (p>0.01).Conclusion: A 0.05% propolis flavonoids concentration was deemed as effective as a 0.1% concentration at inhibiting S. mutans biofilm formation.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Michael R. M. Ranieri ◽  
Derek C. K. Chan ◽  
Luke N. Yaeger ◽  
Madeleine Rudolph ◽  
Sawyer Karabelas-Pittman ◽  
...  

ABSTRACTPseudomonas aeruginosais a biofilm-forming opportunistic pathogen and is intrinsically resistant to many antibiotics. In a high-throughput screen for molecules that modulate biofilm formation, we discovered that the thiopeptide antibiotic thiostrepton (TS), which is considered to be inactive against Gram-negative bacteria, stimulatedP. aeruginosabiofilm formation in a dose-dependent manner. This phenotype is characteristic of exposure to antimicrobial compounds at subinhibitory concentrations, suggesting that TS was active againstP. aeruginosa. Supporting this observation, TS inhibited the growth of a panel of 96 multidrug-resistant (MDR)P. aeruginosaclinical isolates at low-micromolar concentrations. TS also had activity againstAcinetobacter baumanniiclinical isolates. The expression of Tsr, a 23S rRNA-modifying methyltransferase from TS producerStreptomyces azureus, intransconferred TS resistance, confirming that the drug acted via its canonical mode of action, inhibition of ribosome function. The deletion of oligopeptide permease systems used by other peptide antibiotics for uptake failed to confer TS resistance. TS susceptibility was inversely proportional to iron availability, suggesting that TS exploits uptake pathways whose expression is increased under iron starvation. Consistent with this finding, TS activity againstP. aeruginosaandA. baumanniiwas potentiated by the FDA-approved iron chelators deferiprone and deferasirox and by heat-inactivated serum. Screening ofP. aeruginosamutants for TS resistance revealed that it exploits pyoverdine receptors FpvA and FpvB to cross the outer membrane. We show that the biofilm stimulation phenotype can reveal cryptic subinhibitory antibiotic activity, and that TS has activity against select multidrug-resistant Gram-negative pathogens under iron-limited growth conditions, similar to those encountered at sites of infection.


2015 ◽  
Vol 60 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Zhi Ren ◽  
Tao Cui ◽  
Jumei Zeng ◽  
Lulu Chen ◽  
Wenling Zhang ◽  
...  

ABSTRACTDental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation inStreptococcus mutansis promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibitingS. mutansbiofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein fromS. mutansresulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor.In vitroassays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation inS. mutansby selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, thein vivoanti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface cariesin vivowith a concomitant reduction in the percentage ofS. mutansin the animals' dental plaque (P< 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity ofS. mutans.


2005 ◽  
Vol 187 (9) ◽  
pp. 3028-3038 ◽  
Author(s):  
Sang-Joon Ahn ◽  
José A. C. Lemos ◽  
Robert A. Burne

ABSTRACT We report here that HtrA plays a role in controlling growth and competence development for genetic transformation in Streptococcus mutans. Disruption of the gene for HtrA resulted in slow growth at 37°C, reduced thermal tolerance at 42°C, and altered sucrose-dependent biofilm formation on polystyrene surfaces. The htrA mutant also displayed a significantly reduced ability to undergo genetic transformation. A direct association between HtrA and genetic competence was demonstrated by the increased expression of the htrA gene upon exposure to competence-stimulating peptide. The induction of htrA gradually reached a maximum at around 20 min, suggesting that HtrA may be involved in a late competence response. Complementation of the htrA mutation in a single copy on the chromosome of the mutant could rescue the defective growth phenotypes but not transformability, apparently because a second gene, spo0J, immediately downstream of htrA, also affects transformation. The htrA and spo0J genes were shown to be both individually transcribed and cotranscribed and probably have a functional connection in competence development. HtrA regulation appears to be finely tuned in S. mutans, since strains containing multiple copies of htrA exhibited abnormal growth phenotypes. Collectively, the results reveal HtrA to be an integral component of the regulatory network connecting cellular growth, stress tolerance, biofilm formation, and competence development and reveal a novel role for the spo0J gene in genetic transformation.


Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3104-3112 ◽  
Author(s):  
Miriam Müller ◽  
Patrick Marx ◽  
Regine Hakenbeck ◽  
Reinhold Brückner

The two-component regulatory system CiaRH of Streptococcus pneumoniae affects β-lactam susceptibility, autolysis, bacteriocin production, competence development, host colonization and virulence. The system was discovered in a screen for S. pneumoniae R6 mutants resistant to the β-lactam antibiotic cefotaxime. A mutation in the histidine kinase gene ciaH led to this phenotype by enhancing CiaR-mediated gene expression. Additional mutations in ciaH have been described in other spontaneous β-lactam-resistant mutants of S. pneumoniae R6, but their influence on CiaR-mediated gene regulation has not been determined. Likewise, altered ciaH alleles are present in clinical S. pneumoniae isolates, none of which had been characterized. These novel ciaH variants were introduced into S. pneumoniae R6 to measure their ability to activate CiaR-dependent regulation. The ciaH alleles from spontaneous mutants obtained in the laboratory increased the activity of CiaR-dependent promoters between four- and 26-fold, while variants from clinical strains were less effective, with a threefold activation at most. Accordingly, phenotypes associated with a hyperactive CiaRH system, β-lactam resistance, and prevention of competence development, were far more pronounced in the laboratory mutants. Amino acid changes affecting CiaH function were positioned throughout the protein. Five of the most activating changes are located close to the conserved histidine and one in the extracytoplasmic sensor domain. The characterization of new alleles of ciaH expands the spectrum of CiaH variants, which may help to elucidate signal transduction of this important regulatory system. Our study also demonstrates that ciaH alleles overstimulating CiaR regulon expression are present in clinical isolates of S. pneumoniae.


2020 ◽  
Author(s):  
Zehdi Eydou ◽  
Bader Naser Jad ◽  
Zeyad Elsayed ◽  
Anas Ismail ◽  
Michael Magaogao ◽  
...  

Abstract Background: Streptococcus mutans is a major cause of dental caries. Its capacity to produce biofilm is fundamental in the pathogenesis of this ubiquitous condition. As maintaining a healthy dentition is a genuine goal given the contemporary advance in caries control, researchers are striving to achieve a breakthrough in caries therapy. We are taking the anti-cariogenic properties of vitamin C a step-further, considering the well-known evidence of the inversely proportionate relationship between salivary levels of vitamin C and dental caries. The aim of this study was to determine MIC, MBC, biofilm prevention concentration (BPC), and derivative measures of vitamin C against fresh clinical isolates of S. mutans to evaluate its efficacy as an anti-cariogenic agent.Results: Based on the data of four independent experiments done in quadruplicates, we found a concentration-dependent inhibitory effect of vitamin C on all S. mutans strains tested. The average MBC, MIC, and BPC of vitamin C were found to be 10.16, 9.38, and 5.61 mg/ml, respectively. Spectrophotometric quantitation of crystal violet showed diminished biofilm formation in the presence of vitamin C (p < 0.05). When compared with gentamicin, vitamin C produced a zone of inhibition that was three times as large against the clinical isolates.Conclusion: Our results show that vitamin C has a negative effect on S. mutans growth and biofilm formation. Being the first to meticulously utilize BPC to explore a well-known effect of vitamin C, this report aims to help in the instigation of trials of higher evidence that will ultimately culminate in repurposing vitamin C as a novel anti-cariogenic agent, albeit further studies are required to provide auxiliary evidence in this context.


Sign in / Sign up

Export Citation Format

Share Document