A Solvent-Exposed Patch in Chaperone-Bound YopE Is Required for Translocation by the Type III Secretion System
ABSTRACT Most effector proteins of bacterial type III secretion (T3S) systems require chaperone proteins for translocation into host cells. Such effectors are bound by chaperones in a conserved and characteristic manner, with the chaperone-binding (Cb) region of the effector wound around the chaperone in a highly extended conformation. This conformation has been suggested to serve as a translocation signal in promoting the association between the chaperone-effector complex and a bacterial component required for translocation. We sought to test a prediction of this model by identifying a potential association site for the Yersinia pseudotuberculosis chaperone-effector pair SycE-YopE. We identified a set of residues in the YopE Cb region that are required for translocation but are dispensable for expression, SycE binding, secretion into the extrabacterial milieu, and stability in mammalian cells. These residues form a solvent-exposed patch on the surface of the chaperone-bound Cb region, and thus their effect on translocation is consistent with the structure of the chaperone-bound Cb region serving as a signal for translocation.