scholarly journals A Solvent-Exposed Patch in Chaperone-Bound YopE Is Required for Translocation by the Type III Secretion System

2010 ◽  
Vol 192 (12) ◽  
pp. 3114-3122 ◽  
Author(s):  
Loren Rodgers ◽  
Romila Mukerjea ◽  
Sara Birtalan ◽  
Devorah Friedberg ◽  
Partho Ghosh

ABSTRACT Most effector proteins of bacterial type III secretion (T3S) systems require chaperone proteins for translocation into host cells. Such effectors are bound by chaperones in a conserved and characteristic manner, with the chaperone-binding (Cb) region of the effector wound around the chaperone in a highly extended conformation. This conformation has been suggested to serve as a translocation signal in promoting the association between the chaperone-effector complex and a bacterial component required for translocation. We sought to test a prediction of this model by identifying a potential association site for the Yersinia pseudotuberculosis chaperone-effector pair SycE-YopE. We identified a set of residues in the YopE Cb region that are required for translocation but are dispensable for expression, SycE binding, secretion into the extrabacterial milieu, and stability in mammalian cells. These residues form a solvent-exposed patch on the surface of the chaperone-bound Cb region, and thus their effect on translocation is consistent with the structure of the chaperone-bound Cb region serving as a signal for translocation.

2021 ◽  
Vol 17 (11) ◽  
pp. e1009650
Author(s):  
Stephan Pienkoß ◽  
Soheila Javadi ◽  
Paweena Chaoprasid ◽  
Thomas Nolte ◽  
Christian Twittenhoff ◽  
...  

Many bacterial pathogens use a type III secretion system (T3SS) as molecular syringe to inject effector proteins into the host cell. In the foodborne pathogen Yersinia pseudotuberculosis, delivery of the secreted effector protein cocktail through the T3SS depends on YopN, a molecular gatekeeper that controls access to the secretion channel from the bacterial cytoplasm. Here, we show that several checkpoints adjust yopN expression to virulence conditions. A dominant cue is the host body temperature. A temperature of 37°C is known to induce the RNA thermometer (RNAT)-dependent synthesis of LcrF, a transcription factor that activates expression of the entire T3SS regulon. Here, we uncovered a second layer of temperature control. We show that another RNAT silences translation of the yopN mRNA at low environmental temperatures. The long and short 5’-untranslated region of both cellular yopN isoforms fold into a similar secondary structure that blocks ribosome binding. The hairpin structure with an internal loop melts at 37°C and thereby permits formation of the translation initiation complex as shown by mutational analysis, in vitro structure probing and toeprinting methods. Importantly, we demonstrate the physiological relevance of the RNAT in the faithful control of type III secretion by using a point-mutated thermostable RNAT variant with a trapped SD sequence. Abrogated YopN production in this strain led to unrestricted effector protein secretion into the medium, bacterial growth arrest and delayed translocation into eukaryotic host cells. Cumulatively, our results show that substrate delivery by the Yersinia T3SS is under hierarchical surveillance of two RNATs.


2013 ◽  
Vol 81 (3) ◽  
pp. 905-914 ◽  
Author(s):  
Laura Kwuan ◽  
Walter Adams ◽  
Victoria Auerbuch

ABSTRACTType III secretion systems (T3SSs) are used by Gram-negative pathogens to form pores in host membranes and deliver virulence-associated effector proteins inside host cells. In pathogenicYersinia, the T3SS pore-forming proteins are YopB and YopD. Mammalian cells recognize theYersiniaT3SS, leading to a host response that includes secretion of the inflammatory cytokine interleukin-1β (IL-1β), Toll-like receptor (TLR)-independent expression of the stress-associated transcription factor Egr1 and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), and host cell death. The knownYersiniaT3SS effector proteins are dispensable for eliciting these responses, but YopB is essential. Three models describe how theYersiniaT3SS might trigger inflammation: (i) mammalian cells sense YopBD-mediated pore formation, (ii) innate immune stimuli gain access to the host cytoplasm through the YopBD pore, and/or (iii) the YopB-YopD translocon itself or its membrane insertion is proinflammatory. To test these models, we constructed aYersinia pseudotuberculosismutant expressing YopD devoid of its predicted transmembrane domain (YopDΔTM) and lacking the T3SS cargo proteins YopHEMOJTN. This mutant formed pores in macrophages, but it could not mediate translocation of effector proteins inside host cells. Importantly, this mutant did not elicit rapid host cell death, IL-1β secretion, or TLR-independent Egr1 and TNF-α expression. These data suggest that YopBD-mediated translocation of unknown T3SS cargo leads to activation of host pathways influencing inflammation, cell death, and response to stress. As the YopDΔTMY. pseudotuberculosismutant formed somewhat smaller pores with delayed kinetics, an alternative model is that the wild-type YopB-YopD translocon is specifically sensed by host cells.


2008 ◽  
Vol 76 (11) ◽  
pp. 5402-5411 ◽  
Author(s):  
Andrea Haraga ◽  
T. Eoin West ◽  
Mitchell J. Brittnacher ◽  
Shawn J. Skerrett ◽  
Samuel I. Miller

ABSTRACT Burkholderia pseudomallei is a bacterial pathogen that causes a broad spectrum of clinical symptoms collectively known as melioidosis. Since it can be acquired by inhalation and is difficult to eradicate due to its resistance to a wide group of antibiotics and capacity for latency, work with B. pseudomallei requires a biosafety level 3 (BSL-3) containment facility. The bsa (Burkholderia secretion apparatus)-encoded type III secretion system (TTSS) has been shown to be required for its full virulence in a number of animal models. TTSSs are export devices found in a variety of gram-negative bacteria that translocate bacterial effector proteins across host cell membranes into the cytoplasm of host cells. Although the Bsa TTSS has been shown to play an important role in the ability of B. pseudomallei to survive and replicate in mammalian cells, escape from the endocytic vacuole, and spread from cell to cell, little is known about its effectors mediating these functions. Using bioinformatics, we identified homologs of several known TTSS effectors from other bacteria in the B. pseudomallei genome. In addition, we show that orthologs of these putative effectors exist in the genome of B. thailandensis, a closely related bacterium that is rarely pathogenic to humans. By generating a Bsa TTSS mutant B. thailandensis strain, we also demonstrated that the Bsa TTSS has similar functions in the two species. Therefore, we propose B. thailandensis as a useful BSL-1 model system to study the role of the Bsa TTSS during Burkholderia infection of mammalian cells and animals.


Author(s):  
Sabrina Mühlen ◽  
Viktor A. Zapol'skii ◽  
Ursula Bilitewski ◽  
Petra Dersch

Infections with enteropathogenic E. coli (EPEC) cause severe diarrhea in children. The non-invasive bacteria adhere to enterocytes of the small intestine and use a type III secretion system (T3SS) to inject effector proteins into host cells to modify and exploit cellular processes in favor of bacterial survival and replication. Several studies have shown that the T3SSs of bacterial pathogens are essential for virulence. Furthermore, the loss of T3SS-mediated effector translocation results in increased immune recognition and clearance of the bacteria. The T3SS is, therefore, considered a promising target for antivirulence strategies and novel therapeutics development. Here, we report the results of a high-throughput screening assay based on the translocation of the EPEC effector protein Tir. Using this assay, we screened more than 13,000 small molecular compounds of six different compound libraries and identified three substances which showed a significant dose-dependent effect on translocation without adverse effects on bacterial or eukaryotic cell viability. Additionally, these substances reduced bacterial binding to host cells, effector-dependent cell detachment and abolished A/E lesion formation without affecting the expression of components of the T3SS or associated effector proteins. Moreover, no effects of the inhibitors on bacterial motility or Shiga-toxin expression were observed. In summary, we have identified three new compounds that strongly inhibit T3SS-mediated translocation of effectors into mammalian cells, which could be valuable as lead substances for treating EPEC and EHEC infections.


2013 ◽  
Vol 58 (2) ◽  
pp. 1118-1126 ◽  
Author(s):  
Miles C. Duncan ◽  
Weng Ruh Wong ◽  
Allison J. Dupzyk ◽  
Walter M. Bray ◽  
Roger G. Linington ◽  
...  

ABSTRACTThe type III secretion system (T3SS) is a bacterial appendage used by dozens of Gram-negative pathogens to subvert host defenses and cause disease, making it an ideal target for pathogen-specific antimicrobials. Here, we report the discovery and initial characterization of two related natural products with T3SS-inhibitory activity that were derived from a marine actinobacterium. Bacterial extracts containing piericidin A1 and the piericidin derivative Mer-A 2026B inhibitedYersinia pseudotuberculosisfrom triggering T3SS-dependent activation of the host transcription factor NF-κB in HEK293T cells but were not toxic to mammalian cells. As theYersiniaT3SS must be functional in order to trigger NF-κB activation, these data indicate that piericidin A1 and Mer-A 2026B block T3SS function. Consistent with this, purified piericidin A1 and Mer-A 2026B dose-dependently inhibited translocation of theY. pseudotuberculosisT3SS effector protein YopM inside CHO cells. In contrast, neither compound perturbed bacterial growthin vitro, indicating that piericidin A1 and Mer-A 2026B do not function as general antibiotics inYersinia. In addition, whenYersiniawas incubated under T3SS-inducing culture conditions in the absence of host cells, Mer-A 2026B and piericidin A1 inhibited secretion of T3SS cargo as effectively as or better than several previously described T3SS inhibitors, such as MBX-1641 and aurodox. This suggests that Mer-A 2026B and piericidin A1 do not block type III secretion by blocking the bacterium-host cell interaction, but rather inhibit an earlier stage, such as T3SS needle assembly. In summary, the marine-derived natural products Mer-A 2026B and piericidin A1 possess previously uncharacterized activity against the bacterial T3SS.


2021 ◽  
Author(s):  
Stephan Pienkoß ◽  
Soheila Javadi ◽  
Paweena Chaoprasid ◽  
Thomas Nolte ◽  
Christian Twittenhoff ◽  
...  

Many bacterial pathogens use a type III secretion system (T3SS) as molecular syringe to inject effector proteins into the host cell. In the foodborne pathogen Yersinia pseudotuberculosis , delivery of the secreted effector protein cocktail through the T3SS depends on YopN, a molecular gatekeeper that controls access to the secretion channel from the bacterial cytoplasm. Here, we show that several checkpoints adjust yopN expression to virulence conditions. A dominant cue is the host body temperature. A temperature of 37 °C is known to induce the RNA thermometer (RNAT)-dependent synthesis of LcrF, a transcription factor that activates expression of the entire T3SS regulon. Here, we uncovered a second layer of temperature control. We show that another RNAT silences translation of the yopN mRNA at low environmental temperatures. The long and short 5’-untranslated region of both cellular yopN isoforms fold into a similar secondary structure that blocks ribosome binding. The hairpin structure with an internal loop melts at 37 °C and thereby permits formation of the translation initiation complex as shown by mutational analysis, in vitro structure probing and toeprinting methods. Importantly, we demonstrate the physiological relevance of the RNAT in the faithful control of type III secretion by using a point-mutated thermostable RNAT variant with a trapped SD sequence. Abrogated YopN production in this strain led to unrestricted effector protein secretion into the medium, bacterial growth arrest and delayed translocation into eukaryotic host cells. Cumulatively, our results show that substrate delivery by the Yersinia T3SS is under hierarchical surveillance of two RNATs.


2008 ◽  
Vol 191 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Andreas K. J. Veenendaal ◽  
Charlotta Sundin ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.


2008 ◽  
Vol 76 (9) ◽  
pp. 4299-4310 ◽  
Author(s):  
Yue Zhang ◽  
James Murtha ◽  
Margaret A. Roberts ◽  
Richard M. Siegel ◽  
James B. Bliska

ABSTRACT Yersinia pseudotuberculosis uses a plasmid (pYV)-encoded type III secretion system (T3SS) to translocate a set of effectors called Yops into infected host cells. YopJ functions to induce apoptosis, and YopT, YopE, and YopH act to antagonize phagocytosis in macrophages. Because Yops do not completely block phagocytosis and Y. pseudotuberculosis can replicate in macrophages, it is important to determine if the T3SS modulates host responses to intracellular bacteria. Isogenic pYV-cured, pYV+ wild-type, and yop mutant Y. pseudotuberculosis strains were allowed to infect bone marrow-derived murine macrophages at a low multiplicity of infection under conditions in which the survival of extracellular bacteria was prevented. Phagocytosis, the intracellular survival of the bacteria, and the apoptosis of the infected macrophages were analyzed. Forty percent of cell-associated wild-type bacteria were intracellular after a 20-min infection, allowing the study of the macrophage response to internalized pYV+ Y. pseudotuberculosis. Interestingly, macrophages restricted survival of pYV+ but not pYV-cured or ΔyopB Y. pseudotuberculosis within phagosomes: only a small fraction of the pYV+ bacteria internalized replicated by 24 h. In addition, ∼20% of macrophages infected with wild-type pYV+ Y. pseudotuberculosis died of apoptosis after 20 h. Analysis of yop mutants expressing catalytically inactive effectors revealed that YopJ was important for apoptosis, while a role for YopE, YopH, and YopT in modulating macrophage responses to intracellular bacteria could not be identified. Apoptosis was reduced in Toll-like receptor 4-deficient macrophages, indicating that cell death required signaling through this receptor. Treatment of macrophages harboring intracellular pYV+ Y. pseudotuberculosis with chloramphenicol reduced apoptosis, indicating that the de novo bacterial protein synthesis was necessary for cell death. Our finding that the presence of a functional T3SS impacts the survival of both bacterium and host following phagocytosis of Y. pseudotuberculosis suggests new roles for the T3SS in Yersinia pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document