scholarly journals Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides inSinorhizobium meliloti

2017 ◽  
Vol 200 (3) ◽  
Author(s):  
Melanie J. Barnett ◽  
Sharon R. Long

ABSTRACTSinorhizobium melilotiis a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene,emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation inrpoAcorresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCEThe alphaproteobacteriumSinorhizobium meliloticonverts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation ofS. melilotifrom a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, theS. meliloticell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterizedS. melilotimutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.

2012 ◽  
Vol 78 (12) ◽  
pp. 4092-4101 ◽  
Author(s):  
Fernando G. Sorroche ◽  
Mariana B. Spesia ◽  
Ángeles Zorreguieta ◽  
Walter Giordano

ABSTRACTSinorhizobium melilotiis a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants.S. melilotiproduces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation inS. melilotireference strains and isogenic mutants. However, the previous observations were obtained by use of “domesticated” laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of nativeS. melilotistrains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with referenceS. melilotistrains. PCR analysis of theexpRgene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment ofS. meliloti.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2015 ◽  
Vol 198 (3) ◽  
pp. 521-535 ◽  
Author(s):  
Simon Schäper ◽  
Elizaveta Krol ◽  
Dorota Skotnicka ◽  
Volkhard Kaever ◽  
Rolf Hilker ◽  
...  

ABSTRACTSinorhizobium melilotiundergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG inS. melilotiRm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation ofN-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of theS. melilotigenespleD,SMb20523,SMb20447,SMc01464, andSMc03178encoding putative DGCs and ofSMb21517encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, anS. melilotistrain that did not produce detectable levels of cdG (cdG0) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. TheSMc01790-SMc01796locus, homologous to theAgrobacterium tumefaciensuppABCDEFcluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility.IMPORTANCEWe present the first systematic genome-wide investigation of the role of 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a symbiotic alpha-rhizobial species. Phenotypes of anS. melilotistrain unable to produce cdG (cdG0) demonstrated that this second messenger is not essential for root nodule symbiosis but may contribute to acid tolerance. Our data further suggest that enhanced levels of cdG promote sessility ofS. melilotiand uncovered a single-domain PilZ protein as regulator of motility.


2018 ◽  
Vol 200 (14) ◽  
Author(s):  
Satya Deo Pandey ◽  
Shilpa Pal ◽  
Ganesh Kumar N ◽  
Ankita Bansal ◽  
Sathi Mallick ◽  
...  

ABSTRACTDuring the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between twomeso-diaminopimelic acids [meso-DAPs]) and 4-3 cross-links (betweend-Ala andmeso-DAP), though there is a predominance (60 to 80%) of 3-3 cross-links. Thedd-carboxypeptidases (dd-CPases) act on pentapeptides to generate tetrapeptides that are used byld-transpeptidases as substrates to form 3-3 cross-links. Therefore,dd-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology ofdd-CPases in mycobacteria is relatively unexplored. In this study, we deleted twodd-CPase genes,msmeg_2433andmsmeg_2432, both individually and in combination, fromMycobacterium smegmatismc2155. Though the singledd-CPase gene deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double-deletion mutant,viz., a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced, and susceptibility to β-lactams and antitubercular agents was enhanced. Moreover, the survival rate of the double mutant within murine macrophages was higher than that of the parent. Interestingly, the complementation with any one of thedd-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3 to 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation, drug susceptibility, and subsistence of the cells within macrophages.IMPORTANCEThe glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. Thedd-CPases generate tetrapeptides by acting on the pentapeptides, andld-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. In this study, we showed that simultaneous deletions of twodd-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression of glycopeptidolipids (significant surface lipid present in many nontuberculous mycobacteria, includingMycobacterium smegmatis) and affect other physiological parameters, like cell morphology, growth rate, biofilm formation, antibiotic susceptibility, and survival within murine macrophages. Thus, unraveling the physiology ofdd-CPases might help us design antimycobacterial therapeutics in the future.


2019 ◽  
Vol 366 (7) ◽  
Author(s):  
Victor A Becerra-Rivera ◽  
Michael F Dunn

ABSTRACTPolyamines are ubiquitous molecules containing two or more amino groups that fulfill varied and often essential physiological and regulatory roles in all organisms. In the symbiotic nitrogen-fixing bacteria known as rhizobia, putrescine and homospermidine are invariably produced while spermidine and norspermidine synthesis appears to be restricted to the alfalfa microsymbiont Sinorhizobium meliloti. Studies with rhizobial mutants deficient in the synthesis of one or more polyamines have shown that these compounds are important for growth, stress resistance, motility, exopolysaccharide production and biofilm formation. In this review, we describe these studies and examine how polyamines are synthesized and regulated in rhizobia.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Tess E. Brewer ◽  
Brian K. Washburn ◽  
Jason S. Lynn ◽  
Kathryn M. Jones

Sinorhizobium phage ΦM6 infects the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. ΦM6 most closely resembles marine phages, such as Puniceispirillum phage HMO-2011, rather than previously sequenced rhizobial phages.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Vida Ho ◽  
Philippe Herman-Bausier ◽  
Christopher Shaw ◽  
Karen A. Conrad ◽  
Melissa C. Garcia-Sherman ◽  
...  

ABSTRACT The human fungal commensal Candida albicans can become a serious opportunistic pathogen in immunocompromised hosts. The C. albicans cell adhesion protein Als1p is a highly expressed member of a large family of paralogous adhesins. Als1p can mediate binding to epithelial and endothelial cells, is upregulated in infections, and is important for biofilm formation. Als1p includes an amyloid-forming sequence at amino acids 325 to 331, identical to the sequence in the paralogs Als5p and Als3p. Therefore, we mutated Val326 to test whether this sequence is important for activity. Wild-type Als1p (Als1pWT) and Als1p with the V326N mutation (Als1pV326N) were expressed at similar levels in a Saccharomyces cerevisiae surface display model. Als1pV326N cells adhered to bovine serum albumin (BSA)-coated beads similarly to Als1pWT cells. However, cells displaying Als1pV326N showed visibly smaller aggregates and did not fluoresce in the presence of the amyloid-binding dye Thioflavin-T. A new analysis tool for single-molecule force spectroscopy-derived surface mapping showed that statistically significant force-dependent Als1p clustering occurred in Als1pWT cells but was absent in Als1pV326N cells. In single-cell force spectroscopy experiments, strong cell-cell adhesion was dependent on an intact amyloid core sequence on both interacting cells. Thus, the major adhesin Als1p interacts through amyloid-like β-aggregation to cluster adhesin molecules in cis on the cell surface as well as in trans to form cell-cell bonds. IMPORTANCE Microbial cell surface adhesins control essential processes such as adhesion, colonization, and biofilm formation. In the opportunistic fungal pathogen Candida albicans, the agglutinin-like sequence (ALS) gene family encodes eight cell surface glycoproteins that mediate adherence to biotic and abiotic surfaces and cell-cell aggregation. Als proteins are critical for commensalism and virulence. Their activities include attachment and invasion of endothelial and epithelial cells, morphogenesis, and formation of biofilms on host tissue and indwelling medical catheters. At the molecular level, Als5p-mediated cell-cell aggregation is dependent on the formation of amyloid-like nanodomains between Als5p-expressing cells. A single-site mutation to valine 326 abolishes cellular aggregation and amyloid formation. Our results show that the binding characteristics of Als1p follow a mechanistic model similar to Als5p, despite its differential expression and biological roles.


2018 ◽  
Vol 200 (24) ◽  
Author(s):  
Mona W. Orr ◽  
Cordelia A. Weiss ◽  
Geoffrey B. Severin ◽  
Husan Turdiev ◽  
Soo-Kyoung Kim ◽  
...  

ABSTRACT Bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that regulates processes, such as biofilm formation and virulence. During degradation, c-di-GMP is first linearized to 5′-phosphoguanylyl-(3′,5′)-guanosine (pGpG) and subsequently hydrolyzed to two GMPs by a previously unknown enzyme, which was recently identified in Pseudomonas aeruginosa as the 3′-to-5′ exoribonuclease oligoribonuclease (Orn). Mutants of orn accumulated pGpG, which inhibited the linearization of c-di-GMP. This product inhibition led to elevated c-di-GMP levels, resulting in increased aggregate and biofilm formation. Thus, the hydrolysis of pGpG is crucial to the maintenance of c-di-GMP homeostasis. How species that utilize c-di-GMP signaling but lack an orn ortholog hydrolyze pGpG remains unknown. Because Orn is an exoribonuclease, we asked whether pGpG hydrolysis can be carried out by genes that encode protein domains found in exoribonucleases. From a screen of these genes from Vibrio cholerae and Bacillus anthracis, we found that only enzymes known to cleave oligoribonucleotides (orn and nrnA) rescued the P. aeruginosa Δorn mutant phenotypes to the wild type. Thus, we tested additional RNases with demonstrated activity against short oligoribonucleotides. These experiments show that only exoribonucleases previously reported to degrade short RNAs (nrnA, nrnB, nrnC, and orn) can also hydrolyze pGpG. A B. subtilis nrnA nrnB mutant had elevated c-di-GMP, suggesting that these two genes serve as the primary enzymes to degrade pGpG. These results indicate that the requirement for pGpG hydrolysis to complete c-di-GMP signaling is conserved across species. The final steps of RNA turnover and c-di-GMP turnover appear to converge at a subset of RNases specific for short oligoribonucleotides. IMPORTANCE The bacterial bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) signaling molecule regulates complex processes, such as biofilm formation. c-di-GMP is degraded in two-steps, linearization into pGpG and subsequent cleavage to two GMPs. The 3′-to-5′ exonuclease oligoribonuclease (Orn) serves as the enzyme that degrades pGpG in Pseudomonas aeruginosa. Many phyla contain species that utilize c-di-GMP signaling but lack an Orn homolog, and the protein that functions to degrade pGpG remains uncharacterized. Here, systematic screening of genes encoding proteins containing domains found in exoribonucleases revealed a subset of genes encoded within the genomes of Bacillus anthracis and Vibrio cholerae that degrade pGpG to GMP and are functionally analogous to Orn. Feedback inhibition by pGpG is a conserved process, as strains lacking these genes accumulate c-di-GMP.


2015 ◽  
Vol 89 (21) ◽  
pp. 10945-10958 ◽  
Author(s):  
Matthew C. Johnson ◽  
Kelsey B. Tatum ◽  
Jason S. Lynn ◽  
Tess E. Brewer ◽  
Stephen Lu ◽  
...  

ABSTRACTRelatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of theSinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relativeRhizobiumphage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-likeS. melilotiphages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 andS. melilotiphage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide.IMPORTANCEDespite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study ofS. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 andS. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.


Sign in / Sign up

Export Citation Format

Share Document