scholarly journals Transcription Start Site Sequence and Spacing between the -10 Region and the Start Site Affect Reiterative Transcription-Mediated Regulation of Gene Expression in Escherichia coli

2014 ◽  
Vol 196 (16) ◽  
pp. 2912-2920 ◽  
Author(s):  
X. Han ◽  
C. L. Turnbough
2000 ◽  
Vol 348 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Isabelle VAN SEUNINGEN ◽  
Michaël PERRAIS ◽  
Pascal PIGNY ◽  
Nicole PORCHET ◽  
Jean-Pierre AUBERT

Control of gene expression in intestinal cells is poorly understood. Molecular mechanisms that regulate transcription of cellular genes are the foundation for understanding developmental and differentiation events. Mucin gene expression has been shown to be altered in many intestinal diseases and especially cancers of the gastrointestinal tract. Towards understanding the transcriptional regulation of a member of the 11p15.5 human mucin gene cluster, we have characterized 3.55 kb of the 5ʹ-flanking region of the human mucin gene MUC5B, including the promoter, the first two exons and the first intron. We report here the promoter activity of successively 5ʹ-truncated sections of 956 bases of this region by fusing it to the coding region of a luciferase reporter gene. The transcription start site was determined by primer-extension analysis. The region upstream of the transcription start site is characterized by the presence of a TATA box at bases -32/-26, DNA-binding elements for transcription factors c-Myc, N-Myc, Sp1 and nuclear factor ĸB as well as putative activator protein (AP)-1-, cAMP-response-element-binding protein (CREB)-, hepatocyte nuclear factor (HNF)-1-, HNF-3-, TGT3-, gut-enriched Krüppel factor (GKLF)-, thyroid transcription factor (TTF)-1- and glucocorticoid receptor element (GRE)-binding sites. Intron 1 of MUC5B was also characterized, it is 2511 nucleotides long and contains a DNA segment of 259 bp in which are clustered eight tandemly repeated GA boxes and a CACCC box that bind Sp1. AP-2α and GATA-1 nuclear factors were also shown to bind to their respective cognate elements in intron 1. In transfection studies the MUC5B promoter showed a cell-specific activity as it is very active in mucus-secreting LS174T cells, whereas it is inactive in Caco-2 enterocytes and HT-29 STD (standard) undifferentiated cells. Within the promoter, maximal transcription activity was found in a segment covering the first 223 bp upstream of the transcription start site. Finally, in co-transfection experiments a transactivating effect of Sp1 on to MUC5B promoter was seen in LS174T and Caco-2 cells.


2003 ◽  
Vol 185 (20) ◽  
pp. 5993-6004 ◽  
Author(s):  
Anne M. L. Barnard ◽  
Jeffrey Green ◽  
Stephen J. W. Busby

ABSTRACT FNR is an Escherichia coli transcription factor that regulates the transcription of many genes in response to anaerobiosis. We have constructed a series of artificial FNR-dependent promoters, based on the melR promoter, in which a consensus FNR binding site was centered at position −41.5 relative to the transcription start site. A second consensus FNR binding site was introduced at different upstream locations, and promoter activity was assayed in vivo. FNR can activate transcription from these promoters when the upstream FNR binding site is located at many different positions. However, sharp repression is observed when the upstream-bound FNR is located near positions −85 or −95. This repression is relieved by the FNR G74C substitution mutant, previously identified as being defective in transcription repression at the yfiD promoter. A parallel series of artificial FNR-dependent promoters, carrying a consensus FNR binding site at position −61.5 and a second upstream DNA site for FNR, was also constructed. Again, promoter activity was repressed by FNR when the upstream-bound FNR was located at particular positions.


2008 ◽  
Vol 190 (15) ◽  
pp. 5224-5229 ◽  
Author(s):  
Jean Bouvier ◽  
Patrick Stragier ◽  
Violette Morales ◽  
Elisabeth Rémy ◽  
Claude Gutierrez

ABSTRACT The Escherichia coli dapB gene encodes one of the enzymes of the biosynthetic pathway leading to lysine and its immediate precursor, diaminopimelate. Expression of dapB is repressed by lysine, but no trans-acting regulator has been identified so far. Our analysis of the dapB regulatory region shows that sequences located in the −81/−118 interval upstream of the transcription start site are essential for full expression of dapB, as well as for lysine repression. Screening a genomic library for a gene that could alleviate lysine repression when present in multicopy led to the recovery of argP, a gene encoding an activating protein of the LysR-type family, known to use lysine as an effector. An argP null mutation strongly decreases dapB transcription that becomes insensitive to lysine. Purified His6-tagged ArgP protein binds with an apparent K d of 35 nM to the dapB promoter in a gel retardation assay, provided that sequences up to −103 are present. In the presence of l-lysine and l-arginine, the binding of ArgP to dapB is partly relieved. These results fit with a model in which ArgP contributes to enhanced transcription of dapB when lysine becomes limiting.


2008 ◽  
Vol 190 (7) ◽  
pp. 2450-2457 ◽  
Author(s):  
Seyyed I. Husnain ◽  
Mark S. Thomas

ABSTRACT The Escherichia coli guaB promoter (P guaB ) regulates the transcription of two genes, guaB and guaA, that are required for de novo synthesis of GMP, a precursor for the synthesis of guanine nucleoside triphosphates. The activity of P guaB is subject to growth rate-dependent control (GRDC). Here we show that the A+T-rich sequence located between positions −59 and −38 relative to the guaB transcription start site stimulates transcription from P guaB ∼8- to 10-fold and, in common with other UP elements, requires the C-terminal domain of the RNA polymerase α subunit for activity. Like the rrnB P1 UP element, the P guaB UP element contains two independently acting subsites located at positions −59 to −47 and −46 to −38 and can stimulate transcription when placed upstream of the lacP1 promoter. We reveal a novel role for the P guaB UP element by demonstrating that it is required for GRDC. The involvement of the UP element in GRDC also requires the participation of sequences located at least 100 bp upstream of the guaB transcription start site. These sequences are required for down-regulation of P guaB activity at lower growth rates.


2016 ◽  
Vol 60 (7) ◽  
pp. 4394-4397 ◽  
Author(s):  
Laurent Poirel ◽  
Nicolas Kieffer ◽  
Adrian Brink ◽  
Jennifer Coetze ◽  
Aurélie Jayol ◽  
...  

ABSTRACTA series of colistin-resistantEscherichia coliclinical isolates was recovered from hospitalized and community patients in South Africa. Seven clonally unrelated isolates harbored themcr-1gene located on different plasmid backbones. Two distinct plasmids were fully sequenced, and identical 2,600-bp-long DNA sequences defining amcr-1cassette were identified. Promoter sequences responsible for the expression ofmcr-1, deduced from the precise identification of the +1 transcription start site formcr-1, were characterized.


2008 ◽  
Vol 191 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Peng Xue ◽  
David Corbett ◽  
Marie Goldrick ◽  
Clare Naylor ◽  
Ian S. Roberts

ABSTRACT Escherichia coli group 2 capsule gene clusters are temperature regulated, being expressed at 37°C but not at 20°C. Expression is regulated at the level of transcription by two convergent promoters, PR1 and PR3. In this paper, we show that regulation of transcription from PR3 involves a number of novel features including H-NS, SlyA, and a large 741-bp 5′ untranslated region (UTR). H-NS represses transcription from PR3 at 20°C and binds both 5′ and 3′ of the transcription start site. The 3′ downstream regulatory element (DRE) was essential for temperature-dependent H-NS repression. At 37°C, SlyA activates transcription independent of H-NS but maximal transcription requires H-NS. The UTR is present between the transcription start site and the first gene in the operon, kpsM. We demonstrate that the UTR, as well as containing the H-NS DRE, functions to moderate the extent of transcription that reaches kpsM and allows the binding of antitermination factor RfaH.


Sign in / Sign up

Export Citation Format

Share Document