Electrochemical proton gradient and lactate concentration gradient in Streptococcus cremoris cells grown in batch culture

1982 ◽  
Vol 152 (2) ◽  
pp. 682-686
Author(s):  
B ten Brink ◽  
W N Konings

The lactate concentration gradient and the components of the electrochemical proton gradient (delta micro H+) were determined in cells of Streptococcus cremoris growing in batch culture. The membrane potential (delta psi) and the pH gradient (delta pH) were determined from the accumulation of the lipophilic cation tetraphenylphosphonium and the weak acid benzoate, respectively. During growth the external pH decreased from 6.8 to 5.3 due to the production of lactate. Delta pH increased from 0 to -35 mV, inside alkaline (at an external pH of 5.7), and fell to zero directly after growth stopped. Delta psi was nearly constant at -90 mV during growth and also dissipated within 40 min after termination of growth. The internal lactate concentration decreased from 200 mM at the beginning of growth (at pH 6.8) to 30 mM at the end of growth (at pH 5.3); the external lactate concentration increased from 8 to 30 mM due to the fermentation of lactose. Thus, the lactate gradient decreased from 80 mV to zero as growth proceeded and the external pH decreased. From the data obtained on delta psi, delta pH, and the lactate concentration gradient, the H+/lactate stoichiometry (n) was calculated. The value of n varied with the external pH from 1.9 (at pH 6.8) to 0.9 (at pH values below 6). This implies that especially at high pH values the carrier-mediated efflux of lactate supplies a significant quantity of metabolic energy to S. cremoris cells. At pH 6.8 this energy gain was almost two ATP equivalents per molecule of lactose consumed if the H+/ATP stoichiometry equals 2. These results supply strong experimental evidence for the energy recycling model postulated by Michels et al.

FEBS Letters ◽  
1974 ◽  
Vol 49 (2) ◽  
pp. 203-207 ◽  
Author(s):  
Rita Casadio ◽  
Assunta Baccarini Melandri ◽  
Davide Zannoni ◽  
Bruno A. Melandri

1998 ◽  
Vol 274 (3) ◽  
pp. E397-E402 ◽  
Author(s):  
Michael C. Hogan ◽  
Erica Ingham ◽  
S. Sadi Kurdak

It has been suggested that during a skeletal muscle contraction the metabolic energy cost at the onset may be greater than the energy cost related to holding steady-state force. The purpose of the present study was to investigate the effect of contraction duration on the metabolic energy cost and fatigue process in fully perfused contracting muscle in situ. Canine gastrocnemius muscle ( n = 6) was isolated, and two contractile periods (3 min of isometric, tetanic contractions with 45-min rest between) were conducted by each muscle in a balanced order design. The two contractile periods had stimulation patterns that resulted in a 1:3 contraction-to-rest ratio, with the difference in the two contractile periods being in the duration of each contraction: short duration 0.25-s stimulation/0.75-s rest vs. long duration 1-s stimulation/3-s rest. These stimulation patterns resulted in the same total time of stimulation, number of stimulation pulses, and total time in contraction for each 3-min period. Muscle O2 uptake, the fall in developed force (fatigue), the O2 cost of developed force, and the estimated total energy cost (ATP utilization) of developed force were significantly greater ( P < 0.05) with contractions of short duration. Lactate efflux from the working muscle and muscle lactate concentration were significantly greater with contractions of short duration, such that the calculated energy derived from glycolysis was three times greater in this condition. These results demonstrate that contraction duration can significantly affect both the aerobic and anaerobic metabolic energy cost and fatigue in contracting muscle. In addition, it is likely that the greater rate of fatigue with more rapid contractions was a result of elevated glycolytic production of lactic acid.


1978 ◽  
Vol 24 (4) ◽  
pp. 372-380 ◽  
Author(s):  
P. L. Rogers ◽  
L. Bramall ◽  
I. J. McDonald

The growth of Streptococcus cremoris on a semidefined medium was studied at initial lactose concentrations of 0.2–5.0% in batch culture, and in lactose-limited chemostat cultures at 0.5% lactose. Kinetic analysis of the batch data, using statistical techniques, indicated the importance of lactose limitation and lactic acid inhibition of the growth of S. cremoris. A model for the biomass production, lactose utilization, and lactic acid production in batch culture was proposed. In continuous culture, it was found that steady state populations were maintained at higher dilution rates (D = 0.6–0.7 h−1) than the maximum predicted by batch culture (0.56 h−1). No evidence for a selection of fast-growing mutants was obtained. Copious growth adhering to the walls of the fermentor (i.e. wall growth) occurred very rapidly at higher dilution rates and this undoubtedly affected steady-state growth and wash-out and, as a consequence, the apparent maximum dilution rate.


Sign in / Sign up

Export Citation Format

Share Document