Infection of Glia by Human Pegivirus Suppresses Peroxisomal and Antiviral Signaling Pathways

2021 ◽  
Author(s):  
M. A. L. Doan ◽  
A. Roczkowsky ◽  
M. Smith ◽  
G. Blevins ◽  
F. K. H. van Landeghem ◽  
...  

Human pegivirus (HPgV) infects peripheral leukocytes but was recently shown to be a neurotropic virus associated with leukoencephalitis in humans. In the present study, we investigated the neural cell tropism of HPgV as well as its effects on host immune responses. HPgV wild type (WT) as well as a mutant virus with a deletion in the HPgV NS2 gene (ΔNS2) were able to productively infect human astrocytes and microglia but not neurons or an oligodendrocyte-derived cell line. Of note, the ΔNS2 virus replicated better than WT pegivirus in astrocytes with both viruses being able to subsequently infect and spread in fresh human astrocyte cultures. Infection of human glia by HPgV WT and ΔNS2 viruses resulted in suppression of peroxisome-associated genes including PEX11B, ABCD1, PEX7, ABCD3, PEX3 and PEX5L during peak viral production, which was accompanied by reduced expression of IFNB, IRF3, IRF1, and MAVS , particularly in ΔNS2-infected cells. These data were consistent with analyses of brain tissue from patients infected with HPgV in which we observed suppression of peroxisome and type I interferon gene transcripts including PEX11B, ABCD3, IRF1, and IRF3 with concurrent loss of PMP70 immunoreactivity in glia. Our data indicate that human astrocytes and microglia are permissive to HPgV infection resulting in peroxisome injury and suppressed antiviral signaling that is influenced by viral diversity. Importance: Human pegiviruses are detected in 1-5% of the general population, principally infecting leukocytes, although their effects on human health remain uncertain. Herein, we show that human pegivirus infects specific neural cell types in culture and human brain and like other neurotropic flaviviruses, it causes suppression of peroxisome and antiviral signalling pathways, which could favour ongoing viral infection and perhaps confer susceptibility to the development of neurological disease.

2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Teslin S. Sandstrom ◽  
Nischal Ranganath ◽  
Stephanie C. Burke Schinkel ◽  
Syim Salahuddin ◽  
Oussama Meziane ◽  
...  

ABSTRACT The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus—initially developed as a cancer therapy—is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.


2021 ◽  
Author(s):  
Ning Yang ◽  
Yi Wang ◽  
Peihong Dai ◽  
Tuo Li ◽  
Christian Zierhut ◽  
...  

The DNA sensor cyclic GMP-AMP synthase (cGAS) is critical in host antiviral immunity. Vaccinia virus (VACV) is a large cytoplasmic DNA virus that belongs to the poxvirus family. How vaccinia virus antagonizes the cGAS-mediated cytosolic DNA-sensing pathway is largely unknown. In this study, we screened 82 vaccinia viral genes to identify potential viral inhibitors of the cGAS/Stimulator of interferon gene (STING) pathway. We discovered that vaccinia E5 is a virulence factor and a major inhibitor of cGAS that elicits proteasome-dependent cGAS degradation. E5 localizes to the cytoplasm and nuclei of infected cells. Cytosolic E5 triggers K48-linked ubiquitination of cGAS and proteasome-dependent degradation via interacting with cGAS. E5 itself also undergoes ubiquitination and degradation. Deleting the E5R gene from the Modified vaccinia virus Ankara (MVA) genome strongly induces type I IFN production by dendritic cells (DCs) and promotes DC maturation, thereby improving the immunogenicity of the viral vector.


2006 ◽  
Vol 87 (10) ◽  
pp. 2849-2858 ◽  
Author(s):  
Barbara Reinhardt ◽  
Michael Winkler ◽  
Peter Schaarschmidt ◽  
Robert Pretsch ◽  
Shaoxia Zhou ◽  
...  

Human cytomegalovirus (HCMV) infection appears to be linked to the pathogenesis of atherosclerosis. An association between HCMV infection and an enhanced restenosis rate as well as the induction of vasculopathies after solid organ transplantation has been documented. Knowledge of the cellular and molecular basis of these findings is limited, however. By Northern blot and RT-PCR analysis of human foreskin fibroblasts (HFF) and human coronary artery smooth muscle cells (SMC), we identified extracellular matrix (ECM) genes that were downregulated after HCMV infection, including collagen type I and fibronectin. Quantitative immunoassays showed a significant reduction of soluble collagen type I and fibronectin proteins in supernatants of both cell types. This was shown to be a direct effect of HCMV infection and not due to a response to interferons released from infected cells, since neutralization of alpha and beta interferon activity could not block virus-induced downregulation of matrix proteins. As the amount of ECM depends on both synthesis and degradation, we also assessed the influence of HCMV on the activity of matrix metalloproteinases (MMP). Interestingly, a significant difference in virus-induced matrix degradation could be shown between the two cell types. HCMV upregulated MMP-2 protein and activity in SMC but not in HFF. Thus, HCMV infection of SMC reduces ECM dramatically by inducing two independent mechanisms that influence synthesis as well as degradation of ECM. These may represent molecular mechanisms for HCMV-induced pathogenesis of inflammatory vasculopathies and may facilitate dissemination of HCMV by promoting the detachment of infected cells in vivo.


Author(s):  
A. Marie-Mitchell ◽  
S.W. Cole

Abstract This study evaluated whether children with higher adverse childhood experiences (ACE) scores had alterations in immune cell gene expression profiles. RNA sequencing was conducted on dried blood spot samples from 37 generally healthy English-speaking children (age 5–11) who were recruited from well-child visits at a university-affiliated pediatric practice. The Whole Child Assessment was used to assess ACE exposure. Primary analyses examined an a priori-specified composite of 19 pro-inflammatory gene transcripts. Secondary analyses examined a 34-gene composite assessing Type I interferon response, and used Transcript Origin Analyses to identify cellular mechanisms. After controlling for age, body mass index percentile, sex, race/ethnicity, current insurance status, and household smoking exposure, pro-inflammatory gene expression was elevated by 0.094 log2 RNA expression units with each Child-ACE total score point (p = .019). Type I interferon gene expression was similarly upregulated (0.103; p = .008). Transcript origin analyses implicated CD8+ T cell as the primary sources of gene transcripts upregulated, and nonclassical (CD16+) monocytes as sources of downregulated transcripts. These preliminary analyses suggest that parent-reported ACE exposures are associated with increased expression of both inflammatory and interferon gene transcripts in children's circulating blood cells.


2021 ◽  
Vol 6 (58) ◽  
pp. eabc7302
Author(s):  
Tae Jin Yun ◽  
Suzu Igarashi ◽  
Haoquan Zhao ◽  
Oriana A. Perez ◽  
Marcus R. Pereira ◽  
...  

Plasmacytoid dendritic cells (pDCs) can rapidly produce interferons and other soluble factors in response to extracellular viruses or virus mimics such as CpG-containing DNA. pDCs can also recognize live cells infected with certain RNA viruses, but the relevance and functional consequences of such recognition remain unclear. We studied the response of primary DCs to the prototypical persistent DNA virus, human cytomegalovirus (CMV). Human pDCs produced high amounts of type I interferon (IFN-I) when incubated with live CMV-infected fibroblasts but not with free CMV; the response involved integrin-mediated adhesion, transfer of DNA-containing virions to pDCs, and the recognition of DNA through TLR9. Compared with transient polyfunctional responses to CpG or free influenza virus, pDC response to CMV-infected cells was long-lasting, dominated by the production of IFN-I and IFN-III, and lacked diversification into functionally distinct populations. Similarly, pDC activation by influenza-infected lung epithelial cells was highly efficient, prolonged, and dominated by interferon production. Prolonged pDC activation by CMV-infected cells facilitated the activation of natural killer cells critical for CMV control. Last, patients with CMV viremia harbored phenotypically activated pDCs and increased circulating IFN-I and IFN-III. Thus, recognition of live infected cells is a mechanism of virus detection by pDCs that elicits a unique antiviral immune response.


2021 ◽  
pp. 114436
Author(s):  
Sai Ma ◽  
Anli Liu ◽  
Xiang Hu ◽  
Qi Feng ◽  
Yanqi Zhang ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


2020 ◽  
pp. JVI.02017-20
Author(s):  
Laura Broto ◽  
Nicolás Romero ◽  
Fernando Méndez ◽  
Elisabet Diaz-Beneitez ◽  
Oscar Candelas-Rivera ◽  
...  

Infectious bursal disease virus (IBDV), the best characterized member of the Birnaviridae family, is a highly relevant avian pathogen causing both acute and persistent infections in different avian hosts. Here, we describe the establishment of clonal, long-term, productive persistent IBDV infections in DF-1 chicken embryonic fibroblasts. Although virus yields in persistently-infected cells are exceedingly lower than those detected in acutely infected cells, the replication fitness of viruses isolated from persistently-infected cells is higher than that of the parental virus. Persistently-infected DF-1 and IBDV-cured cell lines derived from them do not respond to type I interferon (IFN). High-throughput genome sequencing revealed that this defect is due to mutations affecting the IFNα/β receptor subunit 2 (IFNAR2) gene resulting in the expression of IFNAR2 polypeptides harbouring large C-terminal deletions that abolish the signalling capacity of IFNα/β receptor complex. Ectopic expression of a recombinant chicken IFNAR2 gene efficiently rescues IFNα responsiveness. IBDV-cured cell lines derived from persistently infected cells exhibit a drastically enhanced susceptibility to establishing new persistent IBDV infections. Additionally, experiments carried out with human HeLa cells lacking the IFNAR2 gene fully recapitulate results obtained with DF-1 cells, exhibiting a highly enhanced capacity to both survive the acute IBDV infection phase and to support the establishment of persistent IBDV infections. Results presented here show that the inactivation of the JAK-STAT signalling pathway significantly reduces the apoptotic response induced by the infection, hence facilitating the establishment and maintenance of IBDV persistent infections.IMPORTANCE Members of the Birnaviridae family, including infectious bursal disease virus (IBDV), exhibit a dual behaviour, causing acute infections that are often followed by the establishment of life-long persistent asymptomatic infections. Indeed, persistently infected specimens might act as efficient virus reservoirs, hence potentially contributing to virus dissemination. Despite the key importance of this biological trait, information about mechanisms triggering IBDV persistency is negligible. Our report evidences the capacity of IBDV, a highly relevant avian pathogen, to establishing long-term, productive, persistent infections in both avian and human cell lines. Data presented here provide novel and direct evidence about the crucial role of type I IFNs on the fate of IBDV-infected cells and their contribution to controlling the establishment of IBDV persistent infections. The use of cell lines unable to respond to type I IFNs opens a promising venue to unveiling additional factors contributing to IBDV persistency.


Sign in / Sign up

Export Citation Format

Share Document