scholarly journals Rate of Recombinational Deletion among Human Endogenous Retroviruses

2007 ◽  
Vol 81 (17) ◽  
pp. 9437-9442 ◽  
Author(s):  
Robert Belshaw ◽  
Jason Watson ◽  
Aris Katzourakis ◽  
Alexis Howe ◽  
John Woolven-Allen ◽  
...  

ABSTRACT The fate of most human endogenous retroviruses (HERVs) has been to undergo recombinational deletion. This process involves homologous recombination between the flanking long terminal repeats (LTRs) of a full-length element, leaving a relic structure in the genome termed a solo LTR. We examined loci in one family, HERV-K(HML2), and found that the deletion rate decreased markedly with age: the rate among recently integrated loci was almost 200-fold higher than that among loci whose insertion predated the divergence of humans and chimpanzees (8 × 10−5 and 4 × 10−7 recombinational deletion events per locus per generation, respectively). One hypothesis for this finding is that increasing mutational divergence between the flanking LTRs reduces the probability of homologous recombination and thus the rate of solo LTR formation. Consistent with this idea, we were able to replicate the observed rates by a simulation in which the probability of recombinational deletion was reduced 10-fold by a single mutation and 100-fold by any additional mutations. We also discuss the evidence for other factors that may influence the relationship between locus age and the rate of deletion, for example, host recombination rates and selection, and highlight the consequences of recombinational deletion for dating recent HERV integrations.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lucas S. Rodrigues ◽  
Luiz H. da Silva Nali ◽  
Cibele O. D. Leal ◽  
Ester C. Sabino ◽  
Eliana M. Lacerda ◽  
...  

Abstract Background Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/MS) is an incapacitating chronic disease that dramatically compromise the life quality. The CFS/ME pathogenesis is multifactorial, and it is believed that immunological, metabolic and environmental factors play a role. It is well documented an increased activity of Human endogenous retroviruses (HERVs) from different families in autoimmune and neurological diseases, making these elements good candidates for biomarkers or even triggers for such diseases. Methods Here the expression of Endogenous retroviruses K and W (HERV-K and HERV-W) was determined in blood from moderately and severely affected ME/CFS patients through real time PCR. Results HERV-K was overexpressed only in moderately affected individuals but HERV-W showed no difference. Conclusions This is the first report about HERV-K differential expression in moderate ME/CFS. Although the relationship between HERVs and ME/CFS has yet to be proven, the observation of this phenomenon deserves further attention.


2005 ◽  
Vol 79 (5) ◽  
pp. 2941-2949 ◽  
Author(s):  
Aline Flockerzi ◽  
Stefan Burkhardt ◽  
Werner Schempp ◽  
Eckart Meese ◽  
Jens Mayer

ABSTRACT The human genome harbors many distinct families of human endogenous retroviruses (HERVs) that stem from exogenous retroviruses that infected the germ line millions of years ago. Many HERV families remain to be investigated. We report in the present study the detailed characterization of the HERV-K14I and HERV-K14CI families as they are represented in the human genome. Most of the 68 HERV-K14I and 23 HERV-K14CI proviruses are severely mutated, frequently displaying uniform deletions of retroviral genes and long terminal repeats (LTRs). Both HERV families entered the germ line ∼39 million years ago, as evidenced by homologous sequences in hominoids and Old World primates and calculation of evolutionary ages based on a molecular clock. Proviruses of both families were formed during a brief period. A majority of HERV-K14CI proviruses on the Y chromosome mimic a higher evolutionary age, showing that LTR-LTR divergence data can indicate false ages. Fully translatable consensus sequences encoding major retroviral proteins were generated. Most HERV-K14I loci lack an env gene and are structurally reminiscent of LTR retrotransposons. A minority of HERV-K14I variants display an env gene. HERV-K14I proviruses are associated with three distinct LTR families, while HERV-K14CI is associated with a single LTR family. Hybrid proviruses consisting of HERV-K14I and HERV-W sequences that appear to have produced provirus progeny in the genome were detected. Several HERV-K14I proviruses harbor TRPC6 mRNA portions, exemplifying mobilization of cellular transcripts by HERVs. Our analysis contributes essential information on two more HERV families and on the biology of HERV sequences in general.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 464
Author(s):  
Vera R. Lezhnyova ◽  
Ekaterina V. Martynova ◽  
Timur I. Khaiboullin ◽  
Richard A. Urbanowicz ◽  
Svetlana F. Khaiboullina ◽  
...  

Two human endogenous retroviruses of the HERV-W family can act as cofactors triggering multiple sclerosis (MS): MS-associated retrovirus (MSRV) and ERVWE1. Endogenous retroviral elements are believed to have integrated in our ancestors’ DNA millions of years ago. Their involvement in the pathogenesis of various diseases, including neurodegenerative pathologies, has been demonstrated. Numerous studies have shown a correlation between the deterioration of patients’ health and increased expression of endogenous retroviruses. The exact causes and mechanisms of endogenous retroviruses activation remains unknown, which hampers development of therapeutics. In this review, we will summarize the main characteristics of human endogenous W retroviruses and describe the putative mechanisms of activation, including epigenetic mechanisms, humoral factors as well as the role of the exogenous viral infections.


2018 ◽  
Author(s):  
Jainy Thomas ◽  
Hervé Perron ◽  
Cédric Feschotte

ABSTRACTHuman endogenous retroviruses (HERVs) occupy a substantial fraction of the genome and impact cellular function with both beneficial and deleterious consequences. The vast majority of HERV sequences descend from ancient retroviral families no longer capable of infection or genomic propagation. In fact, most are no longer represented by full-length proviruses but by solitary long terminal repeats (solo LTRs) that arose via non-allelic recombination events between the two LTRs of a proviral insertion. Because LTR-LTR recombination events may occur long after proviral insertion but are challenging to detect in resequencing data, we hypothesize that this mechanism produces an underappreciated amount of genomic variation in the human population. To test this idea, we develop a computational pipeline specifically designed to capture such dimorphic HERV alleles from short-read genome sequencing data. When applied to 279 individuals sequenced as part of the Simons Genome Diversity Project, the pipeline retrieves most of the dimorphic variants previously reported for the HERV-K(HML2) subfamily as well as dozens of additional candidates, including members of the HERV-H and HERV-W families. We experimentally validate several of these candidates, including the first reported instance of an unfixed HERV-W provirus. These data indicate that human proviral content exhibit more extensive interindividual variation than previously recognized. These findings have important implications for our understanding of the contribution of HERVs to human physiology and disease.


2017 ◽  
Vol 91 (21) ◽  
Author(s):  
Devinka Bamunusinghe ◽  
Qingping Liu ◽  
Ronald Plishka ◽  
Michael A. Dolan ◽  
Matthew Skorski ◽  
...  

ABSTRACT Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3. Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions. IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tessa M Bertozzi ◽  
Nozomi Takahashi ◽  
Geula Hanin ◽  
Anastasiya Kazachenka ◽  
Anne C Ferguson-Smith

Intracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (Iap5-1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (Iap5-1full), Iap5-1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the Iap5-1solo variant. Iap5-1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of Iap5-1 as a genetically induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.


1985 ◽  
Vol 5 (11) ◽  
pp. 3325-3329
Author(s):  
D K Hoshizaki ◽  
D J Finnegan

The Drosophila melanogaster transposable element 412 is transiently unstable in Saccharomyces cerevisiae when present on a freely replicating plasmid. The 412 element undergoes recombination to form two circular molecules, a 412 deletion plasmid and, presumably, a 412 circle. The 412 deletion plasmid contains a single long terminal repeat which most likely is the result of homologous recombination within the long terminal repeats. This recombination occurs at or shortly after transformation and is independent of both the RAD52 gene product and the Flp gene of 2 micron DNA.


2001 ◽  
Vol 75 (15) ◽  
pp. 6933-6940 ◽  
Author(s):  
Gregor Scheef ◽  
Nicole Fischer ◽  
Ulrich Krach ◽  
Ralf R. Tönjes

ABSTRACT The organization and transcriptional regulation of porcine endogenous retrovirus (PERV) long terminal repeats (LTRs) are unknown. We have studied the activity of LTRs from replication-competent molecular clones by performing luciferase reporter assays. The LTRs differ in the presence and number of 39-bp repeats located in U3 that confer strong promoter activity in human, simian, canine, feline, and porcine cell lines, whereas for LTRs devoid of the repeats, the promoter strength was significantly reduced. As the activity of a heterologous simian virus 40 promoter and a homologous repeat-deficient LTR was elevated by four 39-bp repeats independently of its orientation and location, the repeat box complies with the definition of an enhancer. During serial virus passaging of molecular PERV clones on human 293 cells, proviral LTRs demonstrated adaptation of transcriptional activity by dynamic changes of the number of 39-bp repeats in the course of up to 12 passaging cycles.


Author(s):  
Иван Геннадьевич Блохин ◽  
Валерий Иванович Глазко

Впервые описано присутствие участков гомологии в геномах восточной прыткой ящерицы к длинным концевым повторам эндогенных ретровирусов Sabrina и SIRE-1 и выполнен сравнительный анализ спектров продуктов амплификации фрагментов геномной ДНК ящерицы Lacerta agilis exigua, полученных с использованием двух типов ДНК маркеров - фрагментов геномной ДНК, ящериц, фланкированных инвертированными повторами микросателлитных локусов и длинными концевыми повторами эндогенных ретровирусов The presence of homology regions in the long terminal repeats of the endogenous retroviruses Sabrina and SIRE - 1 in the genomes of the eastern sand lizard was described for the first time. A comparative analysis of the spectra of amplification products of genomic DNA fragments of the mentioned lizard species obtained using two types of DNA markers - fragments of genomic DNA, flanked by inverted repeats of microsatellite loci and long terminal repeats of endogenous retroviruses, was performed.


Sign in / Sign up

Export Citation Format

Share Document