scholarly journals Nipah Virus Edits Its P Gene at High Frequency To Express the V and W Proteins

2009 ◽  
Vol 83 (8) ◽  
pp. 3982-3987 ◽  
Author(s):  
Sachin Kulkarni ◽  
Valentina Volchkova ◽  
Christopher F. Basler ◽  
Peter Palese ◽  
Viktor E. Volchkov ◽  
...  

ABSTRACT Nipah virus (NiV) is predicted to encode four proteins from its P gene (P, V, W, and C) via mRNA editing and an alternate open reading frame. By use of specific antibodies, the expression of the V, W, and C proteins in NiV-infected cells has now been confirmed. Analysis of the P-gene transcripts shows a ratio of P:V:W mRNA of 1:1:1, but this differs over time, with greater proportions of V and W transcripts observed as the infection progresses. Eighty-two percent of transcripts are edited, with up to 11 G insertions observed. This exceptionally high editing frequency ensures expression of the V and W proteins.

2009 ◽  
Vol 90 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Michael K. Lo ◽  
Brian H. Harcourt ◽  
Bruce A. Mungall ◽  
Azaibi Tamin ◽  
Mark E. Peeples ◽  
...  

The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shelly Sorrells ◽  
Kelly E. McKinnon ◽  
Ashleigh McBratney ◽  
Christopher Sumey

AbstractBRCA-mutant cancers often develop therapeutic resistance through several mechanisms. Here, we report a case of pathogenic germline BRCA2-driven breast cancer monitored for disease progression and acquired resistance using longitudinal multi-tissue genomic testing. Briefly, genomic testing was performed throughout the course of disease on tumor tissue from multiple sites, circulating tumor DNA from blood plasma, and matched normal tissue. Genomic analyses identified actionable variants for targeted therapies, as well as emerging resistance mutations over time. Two unique BRCA2 somatic alterations (p.N255fs and p.D252fs) were identified upon resistance to PARP inhibitor and platinum treatment, respectively. Both alterations restored the open reading frame of the original germline alteration, likely accounting for acquired resistance. This case exemplifies the evolution of multiple subclonal BRCA reversion alterations over time and demonstrates the value of longitudinal multi-tissue genomic testing for monitoring disease progression, predicting measures of response, and evaluating treatment outcomes in oncology patients.


2000 ◽  
Vol 74 (8) ◽  
pp. 3586-3597 ◽  
Author(s):  
Jessica R. Kirshner ◽  
David M. Lukac ◽  
Jean Chang ◽  
Don Ganem

ABSTRACT Open reading frame (ORF) 57 of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a homolog of known posttranscriptional regulators that are essential for replication in other herpesviruses. Here, we examined the expression of this gene and the function(s) of its product. KSHV ORF 57 is expressed very early in infection from a 1.6-kb spliced RNA bearing several in-frame initiation codons. Its product is a nuclear protein that, in transient assays, has little effect on the expression of luciferase reporter genes driven by a variety of KSHV and heterologous promoters. However, ORF 57 protein enhances the accumulation of several viral transcripts, in a manner suggesting posttranscriptional regulation. These transcripts include not only known cytoplasmic mRNAs (e.g., ORF 59) but also a nuclear RNA (nut-1) that lacks coding potential. Finally, ORF 57 protein can also modulate the effects of the ORF 50 gene product, a classical transactivator known to be required for lytic induction. The expression from some (e.g., nut-1) but not all (e.g., tk) ORF 50-responsive promoters can be synergistically enhanced by coexpression of ORF 50 and ORF 57. This effect is not due to upregulation of ORF 50 expression but rather to a posttranslational enhancement of the transcriptional activity of ORF 50. These data indicate that ORF 57 is a powerful pleiotropic effector that can act on several posttranscriptional levels to modulate the expression of viral genes in infected cells.


1998 ◽  
Vol 72 (3) ◽  
pp. 2265-2271 ◽  
Author(s):  
Xiao Tao Lu ◽  
Amy C. Sims ◽  
Mark R. Denison

ABSTRACT The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser4014. We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn4208, a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.


1999 ◽  
Vol 73 (1) ◽  
pp. 343-351 ◽  
Author(s):  
Stéphane Hausmann ◽  
Dominique Garcin ◽  
Anne-Sophie Morel ◽  
Daniel Kolakofsky

ABSTRACT Editing of paramyxovirus P gene mRNAs occurs cotranscriptionally and functions to fuse an alternate downstream open reading frame to the N-terminal half of the P protein. G residues are inserted into a short G run contained within a larger purine run (A n G n ) in this process, by a mechanism whereby the transcribing polymerase stutters (i.e., reads the same template cytosine more than once). Although Sendai virus (SeV) and bovine parainfluenza virus type 3 (bPIV3) are closely related, the G insertions in their P mRNAs are distributed differently. SeV predominantly inserts a single G residue within the G run of the sequence 5′ AACAAAAAAGGG, whereas bPIV3 inserts one to six G’s at roughly equal frequency within the sequence 5′ AUUAAAAAAGGGG(differences are underlined). We have examined how thecis-acting editing sequence determines the number of G’s inserted, both in a transfected cell system using minigenome analogues and by generating recombinant viruses. We found that the presence of four rather than three G’s in the purine run did not affect the distribution of G insertions. However, when the underlined AC of the SeV sequence was replaced by the UU found in bPIV3, the editing phenotype from both the minigenome and the recombinant virus resembled that found in natural bPIV3 infections (i.e., a significant fraction of the mRNAs contained two to six G insertions). The two nucleotides located just upstream of the polypurine tract are thus key determinants of the editing phenotype of these viruses. Moreover, the minimum number of A residues that will promote SeV editing phenotype is six but can be reduced to five when the upstream AC is replaced by UU. A model for how the upstream dinucleotide controls the insertion phenotype is presented.


1999 ◽  
Vol 73 (3) ◽  
pp. 2027-2037 ◽  
Author(s):  
Leonie C. van Dinten ◽  
Sietske Rensen ◽  
Alexander E. Gorbalenya ◽  
Eric J. Snijder

ABSTRACT The open reading frame (ORF) 1b-encoded part of the equine arteritis virus (EAV) replicase is expressed by ribosomal frameshifting during genome translation, which results in the production of an ORF1ab fusion protein (345 kDa). Four ORF1b-encoded processing products, nsp9 (p80), nsp10 (p50), nsp11 (p26), and nsp12 (p12), have previously been identified in EAV-infected cells (L. C. van Dinten, A. L. M. Wassenaar, A. E. Gorbalenya, W. J. M. Spaan, and E. J. Snijder, J. Virol. 70:6625–6633, 1996). In the present study, the generation of these four nonstructural proteins was shown to be mediated by the nsp4 serine protease, which is the main viral protease (E. J. Snijder, A. L. M. Wassenaar, L. C. van Dinten, W. J. M. Spaan, and A. E. Gorbalenya, J. Biol. Chem. 271:4864–4871, 1996). Mutagenesis of candidate cleavage sites revealed that Glu-2370/Ser, Gln-2837/Ser, and Glu-3056/Gly are the probable nsp9/10, nsp10/11, and nsp11/12 junctions, respectively. Mutations which abolished ORF1b protein processing were introduced into a recently developed infectious cDNA clone (L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, Proc. Natl. Acad. Sci. USA 94:991–997, 1997). An analysis of these mutants showed that the selective blockage of ORF1b processing affected different stages of EAV reproduction. In particular, the mutant with the nsp10/11 cleavage site mutation Gln-2837→Pro displayed an unusual phenotype, since it was still capable of RNA synthesis but was incapable of producing infectious virus.


2006 ◽  
Vol 80 (7) ◽  
pp. 3541-3548 ◽  
Author(s):  
Joshua Munger ◽  
Dong Yu ◽  
Thomas Shenk

ABSTRACT The human cytomegalovirus UL26 open reading frame encodes proteins of 21 and 27 kDa that result from the use of two different in-frame initiation codons. The UL26 protein is a constituent of the virion and thus is delivered to cells upon viral entry. We have characterized a mutant of human cytomegalovirus in which the UL26 open reading frame has been deleted. The UL26 deletion mutant has a profound growth defect, the magnitude of which is dependent on the multiplicity of infection. Two very early defects were discovered. First, even though they were present in normal amounts within mutant virions, the UL99-coded pp28 and UL83-coded pp65 tegument proteins were present in reduced amounts at the earliest times assayed within newly infected cells; second, there was a delay in immediate-early mRNA and protein accumulation. Further analysis revealed that although wild-type levels of the pp28 tegument protein were present in UL26 deletion mutant virions, the protein was hypophosphorylated. We conclude that the UL26 protein influences the normal phosphorylation of at least pp28 in virions and possibly additional tegument proteins. We propose that the hypophosphorylation of tegument proteins causes their destabilization within newly infected cells, perhaps disrupting the normal detegumentation process and leading to a delay in the onset of immediate-early gene expression.


Sign in / Sign up

Export Citation Format

Share Document