scholarly journals Synergistic neutralization of human immunodeficiency virus type 1 by a chimpanzee monoclonal antibody against the V2 domain of gp120 in combination with monoclonal antibodies against the V3 loop and the CD4-binding site.

1996 ◽  
Vol 70 (7) ◽  
pp. 4466-4473 ◽  
Author(s):  
S Vijh-Warrier ◽  
A Pinter ◽  
W J Honnen ◽  
S A Tilley
2004 ◽  
Vol 78 (23) ◽  
pp. 13232-13252 ◽  
Author(s):  
James M. Binley ◽  
Terri Wrin ◽  
Bette Korber ◽  
Michael B. Zwick ◽  
Meng Wang ◽  
...  

ABSTRACT Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV+ plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (≤7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV+ plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.


2003 ◽  
Vol 77 (1) ◽  
pp. 642-658 ◽  
Author(s):  
Ralph Pantophlet ◽  
Erica Ollmann Saphire ◽  
Pascal Poignard ◽  
Paul W. H. I. Parren ◽  
Ian A. Wilson ◽  
...  

ABSTRACT Alanine scanning mutagenesis was performed on monomeric gp120 of human immunodeficiency virus type 1 to systematically identify residues important for gp120 recognition by neutralizing and nonneutralizing monoclonal antibodies (MAbs) to the CD4 binding site (CD4bs). Substitutions that affected the binding of broadly neutralizing antibody b12 were compared to substitutions that affected the binding of CD4 and of two nonneutralizing anti-CD4bs antibodies (b3 and b6) with affinities for monomeric gp120 comparable to that of b12. Not surprisingly, the sensitivities to a number of amino acid changes were similar for the MAbs and for CD4. However, in contrast to what was seen for the MAbs, no enhancing mutations were observed for CD4, suggesting that the virus has evolved toward an optimal gp120-CD4 interaction. Although the epitope maps of the MAbs overlapped, a number of key differences between b12 and the other two antibodies were observed. These differences may explain why b12, in contrast to nonneutralizing antibodies, is able to interact not only with monomeric gp120 but also with functional oligomeric gp120 at the virion surface. Neutralization assays performed with pseudovirions bearing envelopes from a selection of alanine mutants mostly showed a reasonable correlation between the effects of the mutations on b12 binding to monomeric gp120 and neutralization efficacy. However, some mutations produced an effect on b12 neutralization counter to that predicted from gp120 binding data. It appears that these mutations have different effects on the b12 epitope on monomeric gp120 and functional oligomeric gp120. To determine whether monomeric gp120 can be engineered to preferentially bind MAb b12, recombinant gp120s were generated containing combinations of alanine substitutions shown to uniquely enhance b12 binding. Whereas b12 binding was maintained or increased, binding by five nonneutralizing anti-CD4bs MAbs (b3, b6, F105, 15e, and F91) was reduced or completely abolished. These reengineered gp120s are prospective immunogens that may prove capable of eliciting broadly neutralizing antibodies.


2000 ◽  
Vol 74 (23) ◽  
pp. 11008-11016 ◽  
Author(s):  
Susan E. Malenbaum ◽  
David Yang ◽  
Lisa Cavacini ◽  
Marshall Posner ◽  
James Robinson ◽  
...  

ABSTRACT We investigated the underlying mechanism by which the highly conserved N-terminal V3 loop glycan of gp120 conferred resistance to neutralization of human immunodeficiency virus type 1 (HIV-1). We find that the presence or absence of this V3 glycan on clade A and B viruses accorded various degrees of susceptibility to neutralization by antibodies to the CD4 binding site, CD4-induced epitopes, and chemokine receptors. Our data suggest that this carbohydrate moiety on gp120 blocks access to the binding site for CD4 and modulates the chemokine receptor binding site of phenotypically diverse clade A and clade B isolates. Its presence also contributes to the masking of CD4-induced epitopes on clade B envelopes. These findings reveal a common mechanism by which diverse HIV-1 isolates escape immune recognition. Furthermore, the observation that conserved functional epitopes of HIV-1 are more exposed on V3 glycan-deficient envelope glycoproteins provides a basis for exploring the use of these envelopes as vaccine components.


2009 ◽  
Vol 83 (21) ◽  
pp. 11005-11015 ◽  
Author(s):  
Caroline Agrawal-Gamse ◽  
Fang-Hua Lee ◽  
Beth Haggarty ◽  
Andrea P. O. Jordan ◽  
Yanjie Yi ◽  
...  

ABSTRACT We previously reported that a human immunodeficiency virus type 1 (HIV-1) clade B envelope protein with a severely truncated V3 loop regained function after passage in tissue culture. The adapted virus, termed TA1, retained the V3 truncation, was exquisitely sensitive to neutralization by the CD4 binding site monoclonal antibody b12 and by HIV-positive human sera, used CCR5 to enter cells, and was completely resistant to small molecule CCR5 antagonists. To examine the mechanistic basis for these properties, we singly and in combination introduced each of the 5 mutations from the adapted clone TA1 into the unadapted envelope. We found that single amino acid changes in the C3 region, the V3 loop, and in the fusion peptide were responsible for imparting near-normal levels of envelope function to TA1. T342A, which resulted in the loss of a highly conserved glycosylation site in C3, played the primary role. The adaptive amino acid changes had no impact on CCR5 antagonist resistance but made virus more sensitive to neutralization by antibodies to the CD4 binding site, modestly enhanced affinity for CD4, and made TA1 more responsive to CD4 binding. Specifically, TA1 was triggered by soluble CD4 more readily than the parental Env and, unlike the parental Env, could mediate entry on cells that express low levels of CD4. In contrast, TA1 interacted with CCR5 less efficiently and was highly sensitive to antibodies that bind to the CCR5 N terminus and ECL2. Therefore, enhanced utilization of CD4 is one mechanism by which HIV-1 can overcome mutations in the V3 region that negatively affect CCR5 interactions.


2007 ◽  
Vol 82 (5) ◽  
pp. 2570-2574 ◽  
Author(s):  
Jason J. LeBlanc ◽  
Omar Perez ◽  
Thomas J. Hope

ABSTRACT Gag-FP (fluorescent protein) fusion constructs are commonly used to study human immunodeficiency virus type 1 assembly, yielding diffuse signals throughout the cytoplasm along with punctate signals routinely described as virus-like particles (VLPs) representing assembled but unprocessed Gag. However, these particles cannot be accurately described as VLPs, since fluorescence microscopy cannot provide structural resolution. We demonstrate here that the inability of a monoclonal p24 antibody to bind its cognate epitope when unprocessed Gag is assembled distinguishes VLPs from unassembled, monomeric Gag. Furthermore, we show that assembled and unassembled Gag punctate signals travel along microtubules. These monoclonal antibody studies provide a new tool for examining retroviral assembly.


2001 ◽  
Vol 75 (12) ◽  
pp. 5593-5603 ◽  
Author(s):  
Anthea L. Hammond ◽  
Julie Lewis ◽  
Jackie May ◽  
Jan Albert ◽  
Peter Balfe ◽  
...  

ABSTRACT To assess the antigenicity of envelope glycoproteins derived from primary human immunodeficiency virus type 1 populations, their interactions with the receptor CD4, and their coreceptor usage, we have cloned and expressed multiple gp120 proteins from a number of primary virus isolates. Characterization of these proteins showed a high degree of antigenic polymorphism both within the CD4 binding site and in defined neutralization epitopes, which may partially account for the general resistance of primary isolates to neutralizing agents. Furthermore, chimeric viruses expressing gp120 proteins with reduced CD4 binding abilities are viable, suggesting that primary viruses may require a less avid interaction with the receptor CD4 to initiate infection than do their laboratory-adapted counterparts. The coreceptor usage of chimeric viruses was related to the ability of the virus to bind CD4, with reduced CD4 binding correlating with preferential usage of CXCR4. Changes in coreceptor usage mapped to sequence changes in the C2 and V4 regions, with no changes seen in the V3 region.


Sign in / Sign up

Export Citation Format

Share Document