scholarly journals Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Samantha Wellington ◽  
E. Peter Greenberg

ABSTRACTMany species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of “promiscuous” receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression inEscherichia coli. We found that the standardE. colimethods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native andE. colireporters. Additionally, receptor overexpression resulted in AHL-independent activity inPseudomonas aeruginosa. Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCESpecific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. “Eavesdropping” by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.

2014 ◽  
Vol 81 (4) ◽  
pp. 1477-1489 ◽  
Author(s):  
Nancy Weiland-Bräuer ◽  
Nicole Pinnow ◽  
Ruth A. Schmitz

ABSTRACTTwo reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of theseEscherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, theseE. colistrains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained theE. coliccdBlethal gene under the control of theE. colilsrApromoter. The second reporter strain (AI1-QQ.1) contained theVibrio fischeriluxIpromoter fused to theccdBgene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacteriumsp.,Pseudoalteromonassp., andVibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Cristina Bez ◽  
Sonia Covaceuzach ◽  
Iris Bertani ◽  
Kumari Sonal Choudhary ◽  
Vittorio Venturi

ABSTRACT LuxR solos are related to quorum sensing (QS) LuxR family regulators; however, they lack a cognate LuxI family protein. LuxR solos are widespread and almost exclusively found in proteobacteria. In this study, we investigated the distribution and conservation of LuxR solos in the fluorescent pseudomonads group. Our analysis of more than 600 genomes revealed that the majority of fluorescent Pseudomonas spp. carry one or more LuxR solos, occurring considerably more frequently than complete LuxI/LuxR archetypical QS systems. Based on the adjacent gene context and conservation of the primary structure, nine subgroups of LuxR solos have been identified that are likely to be involved in the establishment of communication networks. Modeling analysis revealed that the majority of subgroups shows some substitutions at the invariant amino acids of the ligand-binding pocket of QS LuxRs, raising the possibility of binding to non-acyl-homoserine lactone (AHL) ligands. Several mutants and gene expression studies on some LuxR solos belonging to different subgroups were performed in order to shed light on their response. The commonality of LuxR solos among fluorescent pseudomonads is an indication of their important role in cell-cell signaling. IMPORTANCE Cell-cell communication in bacteria is being extensively studied in simple settings and uses chemical signals and cognate regulators/receptors. Many Gram-negative proteobacteria use acyl-homoserine lactones (AHLs) synthesized by LuxI family proteins and cognate LuxR-type receptors to regulate their quorum sensing (QS) target loci. AHL-QS circuits are the best studied QS systems; however, many proteobacterial genomes also contain one or more LuxR solos, which are QS-related LuxR proteins which are unpaired to a cognate LuxI. A few LuxR solos have been implicated in intraspecies, interspecies, and interkingdom signaling. Here, we report that LuxR solo homologs occur considerably more frequently than complete LuxI/LuxR QS systems within the Pseudomonas fluorescens group of species and that they are characterized by different genomic organizations and primary structures and can be subdivided into several subgroups. The P. fluorescens group consists of more than 50 species, many of which are found in plant-associated environments. The role of LuxR solos in cell-cell signaling in fluorescent pseudomonads is discussed.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2012 ◽  
Vol 78 (7) ◽  
pp. 2120-2127 ◽  
Author(s):  
Lei Liu ◽  
Huichun Tong ◽  
Xiuzhu Dong

ABSTRACTComplex interspecies interactions occur constantly between oral commensals and the opportunistic pathogenStreptococcus mutansin dental plaque. Previously, we showed that oral commensalStreptococcus oligofermentanspossesses multiple enzymes for H2O2production, especially lactate oxidase (Lox), allowing it to out-competeS. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene inS. oligofermentans. Apoxdeletion mutant completely lost Pox activity, while ectopically expressedpoxrestored activity. Pox was determined to produce most of the H2O2in the earlier growth phase and log phase, while Lox mainly contributed to H2O2production in stationary phase. Bothpoxandloxwere expressed throughout the growth phase, while expression of theloxgene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H2O2can be attributed to differential gene expression and substrate availability. Interestingly, inactivation ofpoxcauses a dramatic reduction in H2O2production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H2O2. In anin vitrotwo-species biofilm experiment, thepoxmutant ofS. oligofermentansfailed to inhibitS. mutanseven thoughloxwas active. In summary,S. oligofermentansdevelops a Pox-Lox synergy strategy to maximize its H2O2formation so as to win the interspecies competition.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Rita S. Valente ◽  
Pol Nadal-Jimenez ◽  
André F. P. Carvalho ◽  
Filipe J. D. Vieira ◽  
Karina B. Xavier

ABSTRACT Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks—the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway—control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae. This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways. IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae. This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.


2013 ◽  
Vol 79 (18) ◽  
pp. 5745-5752 ◽  
Author(s):  
Amy L. Schaefer ◽  
Colin R. Lappala ◽  
Ryan P. Morlen ◽  
Dale A. Pelletier ◽  
Tse-Yuan S. Lu ◽  
...  

ABSTRACTWe are interested in the root microbiome of the fast-growing Eastern cottonwood tree,Populus deltoides. There is a large bank of bacterial isolates fromP. deltoides, and there are 44 draft genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand the roles of bacterial communication and plant-bacterial signaling inP. deltoides, we focused on the prevalence of acyl-homoserine lactone (AHL) quorum-sensing-signal production and reception in members of theP. deltoidesmicrobiome. We screened 129 bacterial isolates for AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and we queried the available genome sequences of microbiome isolates for homologs of AHL synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. Positive isolates included members of theAlpha-,Beta-, andGammaproteobacteria. Members of theluxIfamily of AHL synthases were identified in 18 of 39 proteobacterial genomes, including genomes of some isolates that tested negative in the bioassay. Members of theluxRfamily of transcription factors, which includes AHL-responsive factors, were more abundant thanluxIhomologs. There were 72 in the 39 proteobacterial genomes. Some of theluxRhomologs appear to be members of a subfamily of LuxRs that respond to as-yet-unknown plant signals rather than bacterial AHLs. Apparently, there is a substantial capacity for AHL cell-to-cell communication in proteobacteria of theP. deltoidesmicrobiota, and there are alsoProteobacteriawith LuxR homologs of the type hypothesized to respond to plant signals or cues.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2011 ◽  
Vol 10 (8) ◽  
pp. 1034-1042 ◽  
Author(s):  
Rebecca A. Hall ◽  
Kara J. Turner ◽  
James Chaloupka ◽  
Fabien Cottier ◽  
Luisa De Sordi ◽  
...  

ABSTRACTLiving as a commensal,Candida albicansmust adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects onC. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted byPseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of theCandidaadenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving theC. albicanshyphal repressor, Sfl1p. Deletion ofSFL1did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing inC. albicansis mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that theBurkholderia cenocepaciadiffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules.


2018 ◽  
Vol 14 ◽  
pp. 2651-2664 ◽  
Author(s):  
Matthew J Styles ◽  
Helen E Blackwell

Quorum sensing (QS) allows many common bacterial pathogens to coordinate group behaviors such as virulence factor production, host colonization, and biofilm formation at high population densities. This cell–cell signaling process is regulated byN-acyl L-homoserine lactone (AHL) signals, or autoinducers, and LuxR-type receptors in Gram-negative bacteria. SdiA is an orphan LuxR-type receptor found inEscherichia, Salmonella, Klebsiella, and Enterobactergenera that responds to AHL signals produced by other species and regulates genes involved in several aspects of host colonization. The inhibition of QS using non-native small molecules that target LuxR-type receptors offers a non-biocidal approach for studying, and potentially controlling, virulence in these bacteria. To date, few studies have characterized the features of AHLs and other small molecules capable of SdiA agonism, and no SdiA antagonists have been reported. Herein, we report the screening of a set of AHL analogs to both uncover agonists and antagonists of SdiA and to start to delineate structure–activity relationships (SARs) for SdiA:AHL interactions. Using a cell-based reporter of SdiA inSalmonella entericaserovar Typhimurium, several non-natural SdiA agonists and the first set of SdiA antagonists were identified and characterized. These compounds represent new chemical probes for exploring the mechanisms by which SdiA functions during infection and its role in interspecies interactions. Moreover, as SdiA is highly stable when produced in vitro, these compounds could advance fundamental studies of LuxR-type receptor:ligand interactions that engender both agonism and antagonism.


2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Chaoyu Cui ◽  
Shihao Song ◽  
Chunxi Yang ◽  
Xiuyun Sun ◽  
Yutong Huang ◽  
...  

ABSTRACTQuorum sensing (QS) signals are widely used by bacterial pathogens to control biological functions and virulence in response to changes in cell population densities.Burkholderia cenocepaciaemploys a molecular mechanism in which thecis-2-dodecenoic acid (namedBurkholderiadiffusiblesignalfactor [BDSF]) QS system regulatesN-acyl homoserine lactone (AHL) signal production and virulence by modulating intracellular levels of cyclic diguanosine monophosphate (c-di-GMP). Thus, inhibition of BDSF signaling may offer a non-antibiotic-based therapeutic strategy against BDSF-regulated bacterial infections. In this study, we report the synthesis of small-molecule mimics of the BDSF signal and evaluate their ability to inhibit BDSF QS signaling inB. cenocepacia. A novel structural analogue of BDSF, 14-Me-C16:Δ2(cis-14-methylpentadec-2-enoic acid), was observed to inhibit BDSF production and impair BDSF-regulated phenotypes inB. cenocepacia, including motility, biofilm formation, and virulence, while it did not inhibit the growth rate of this pathogen. 14-Me-C16:Δ2also reduced AHL signal production. Genetic and biochemical analyses showed that 14-Me-C16:Δ2inhibited the production of the BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Notably, 14-Me-C16:Δ2attenuated BDSF-regulated phenotypes in variousBurkholderiaspecies. These findings suggest that 14-Me-C16:Δ2could potentially be developed as a new therapeutic agent against pathogenicBurkholderiaspecies by interfering with their QS signaling.IMPORTANCEBurkholderia cenocepaciais an important opportunistic pathogen which can cause life-threatening infections in susceptible individuals, particularly in cystic fibrosis and immunocompromised patients. It usually employs two types of quorum sensing (QS) systems, including thecis-2-dodecenoic acid (BDSF) system andN-acyl homoserine lactone (AHL) system, to regulate virulence. In this study, we have designed and identified an unsaturated fatty acid compound (cis-14-methylpentadec-2-enoic acid [14-Me-C16:Δ2]) that is capable of interfering withB. cenocepaciaQS signaling and virulence. We demonstrate that 14-Me-C16:Δ2reduced BDSF and AHL signal production inB. cenocepacia. It also impaired QS-regulated phenotypes in variousBurkholderiaspecies. These results suggest that 14-Me-C16:Δ2could interfere with QS signaling in manyBurkholderiaspecies and might be developed as a new antibacterial agent.


Sign in / Sign up

Export Citation Format

Share Document