scholarly journals Dynamic Virulence: Real-Time Assessment of Intracellular Pathogenesis Links Cryptococcus neoformans Phenotype with Clinical Outcome

mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Michael K. Mansour ◽  
Jatin M. Vyas ◽  
Stuart M. Levitz

ABSTRACT While a myriad of studies have examined host factors that predispose persons to infection with the opportunistic fungal pathogen Cryptococcus neoformans, comparatively little has been done to examine how virulence factor differences among cryptococcal isolates may impact outcome. In the recent report by Alanio et al. (A. Alanio, M. Desnos-Ollivier, and F. Dromer, mBio 2:e00158-11, 2011), novel flow cytometry-based techniques were employed to demonstrate an association between the phenotype of C. neoformans-macrophage interactions, as measured by phagocytosis and intracellular replication, and patient outcomes, as determined by positive cultures on therapy and survival. These experiments establish that the prognosis of patients with cryptococcosis is influenced by the phenotypic properties of the infecting fungal isolate.

2011 ◽  
Vol 10 (9) ◽  
pp. 1264-1268 ◽  
Author(s):  
Lorina G. Baker ◽  
Charles A. Specht ◽  
Jennifer K. Lodge

ABSTRACTCryptococcus neoformansis an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.


2014 ◽  
Vol 13 (5) ◽  
pp. 657-663 ◽  
Author(s):  
Katie Glenn ◽  
Cheryl Ingram-Smith ◽  
Kerry S. Smith

ABSTRACTXylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), previously thought to be present only in bacteria but recently found in fungi, catalyzes the formation of acetyl phosphate from xylulose 5-phosphate or fructose 6-phosphate. Here, we describe the first biochemical and kinetic characterization of a eukaryotic Xfp, from the opportunistic fungal pathogenCryptococcus neoformans, which has twoXFPgenes (designatedXFP1andXFP2). Our kinetic characterization ofC. neoformansXfp2 indicated the existence of both substrate cooperativity for all three substrates and allosteric regulation through the binding of effector molecules at sites separate from the active site. Prior to this study, Xfp enzymes from two bacterial genera had been characterized and were determined to follow Michaelis-Menten kinetics.C. neoformansXfp2 is inhibited by ATP, phosphoenolpyruvate (PEP), and oxaloacetic acid (OAA) and activated by AMP. ATP is the strongest inhibitor, with a half-maximal inhibitory concentration (IC50) of 0.6 mM. PEP and OAA were found to share the same or have overlapping allosteric binding sites, while ATP binds at a separate site. AMP acts as a very potent activator; as little as 20 μM AMP is capable of increasing Xfp2 activity by 24.8% ± 1.0% (mean ± standard error of the mean), while 50 μM prevented inhibition caused by 0.6 mM ATP. AMP and PEP/OAA operated independently, with AMP activating Xfp2 and PEP/OAA inhibiting the activated enzyme. This study provides valuable insight into the metabolic role of Xfp within fungi, specifically the fungal pathogenCryptococcus neoformans, and suggests that at least some Xfps display substrate cooperative binding and allosteric regulation.


2016 ◽  
Vol 84 (6) ◽  
pp. 1879-1886 ◽  
Author(s):  
Lena J. Heung ◽  
Tobias M. Hohl

Cryptococcus neoformansis an opportunistic fungal pathogen that is inhaled into the lungs and can lead to life-threatening meningoencephalitis in immunocompromised patients. Currently, the molecular mechanisms that regulate the mammalian immune response to respiratory cryptococcal challenge remain poorly defined. DAP12, a signaling adapter for multiple pattern recognition receptors in myeloid and natural killer (NK) cells, has been shown to play both activating and inhibitory roles during lung infections by different bacteria and fungi. In this study, we demonstrate that DAP12 plays an important inhibitory role in the immune response toC. neoformans. Infectious outcomes in DAP12−/−mice, including survival and lung fungal burden, are significantly improved compared to those in C57BL/6 wild-type (WT) mice. We find that eosinophils and macrophages are decreased while NK cells are increased in the lungs of infected DAP12−/−mice. In contrast to WT NK cells, DAP12−/−NK cells are able to repressC. neoformansgrowthin vitro. Additionally, DAP12−/−macrophages are more highly activated than WT macrophages, with increased production of tumor necrosis factor (TNF) and CCL5/RANTES and more efficient uptake and killing ofC. neoformans. These findings suggest that DAP12 acts as a brake on the pulmonary immune response toC. neoformansby promoting pulmonary eosinophilia and by inhibiting the activation and antifungal activities of effector cells, including NK cells and macrophages.


mBio ◽  
2021 ◽  
Author(s):  
Laure Nicolas Annick Ries ◽  
Patricia Alves de Castro ◽  
Lilian Pereira Silva ◽  
Clara Valero ◽  
Thaila Fernanda dos Reis ◽  
...  

Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion.


2015 ◽  
Vol 83 (12) ◽  
pp. 4513-4527 ◽  
Author(s):  
Chrissy M. Leopold Wager ◽  
Camaron R. Hole ◽  
Karen L. Wozniak ◽  
Michal A. Olszewski ◽  
Mathias Mueller ◽  
...  

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals,C. neoformanscan lead to life-threatening meningoencephalitis. Studies using a virulent strain ofC. neoformansengineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonaryC. neoformansinfection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformansactivity remains unknown. The current studies demonstrate that infection withC. neoformansstrain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformansactivity via the production of NO.


1996 ◽  
Vol 40 (3) ◽  
pp. 541-545 ◽  
Author(s):  
Y Wang ◽  
A Casadevall

Cryptococcus neoformans is an opportunistic fungal pathogen which becomes heavily melanized in the presence of phenolic substrates such as L-dopa. Various drugs are known to bind to melanin with high affinity, including the antipsychotic agent trifluoperazine and the antimalarial agent chloroquine. We hypothesized that drugs which bind melanin may have different toxicities for melanized and nonmelanized C. neoformans cells. The effects of trifluoperazine and chloroquine or C. neoformans were determined by measuring cell viability after exposure to these drugs. Cell viability was measured by CFU determination and flow cytometry with propidium iodide staining. Melanized cells were more susceptible than nonmelanized cells to the fungicidal effects of trifluoperazine. Chloroquine had no fungicidal effect on either melanized or nonmelanized C. neoformans under the conditions studied. Flow cytometry of trifluoperazine-treated C. neoformans cells stained with the mitochondrial stain dihydrorhodamine 123 revealed fluorescence changes consistent with mitochondrial damage. Our results indicate that melanized and nonmelanized C. neoformans cells can differ in susceptibility to certain drugs and suggest that strategies which target melanin may be productive for antifungal-drug discovery.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Lucy X. Li ◽  
Camaron R. Hole ◽  
Javier Rangel-Moreno ◽  
Shabaana A. Khader ◽  
Tamara L. Doering

ABSTRACT Cryptococcus neoformans is a fungal pathogen that kills almost 200,000 people each year and is distinguished by abundant and unique surface glycan structures that are rich in xylose. A mutant strain of C. neoformans that cannot transport xylose precursors into the secretory compartment is severely attenuated in virulence in mice yet surprisingly is not cleared. We found that this strain failed to induce the nonprotective T helper cell type 2 (Th2) responses characteristic of wild-type infection, instead promoting sustained interleukin 12p40 (IL-12p40) induction and increased IL-17A (IL-17) production. It also stimulated dendritic cells to release high levels of proinflammatory cytokines, a behavior we linked to xylose expression. We further discovered that inducible bronchus-associated lymphoid tissue (iBALT) forms in response to infection with either wild-type cryptococci or the mutant strain with reduced surface xylose; although iBALT formation is slowed in the latter case, the tissue is better organized. Finally, our temporal studies suggest that lymphoid structures in the lung restrict the spread of mutant fungi for at least 18 weeks after infection, which is in contrast to ineffective control of the pathogen after infection with wild-type cells. These studies demonstrate the role of xylose in modulation of host response to a fungal pathogen and show that cryptococcal infection triggers iBALT formation.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Anand Srinivasan ◽  
Kai P. Leung ◽  
Jose L. Lopez-Ribot ◽  
Anand K. Ramasubramanian

ABSTRACT Micro- and nanoscale technologies have radically transformed biological research from genomics to tissue engineering, with the relative exception of microbial cell culture, which is still largely performed in microtiter plates and petri dishes. Here, we present nanoscale culture of the opportunistic fungal pathogen Candida albicans on a microarray platform. The microarray consists of 1,200 individual cultures of 30 nl of C. albicans biofilms (“nano-biofilms”) encapsulated in an inert alginate matrix. We demonstrate that these nano-biofilms are similar to conventional macroscopic biofilms in their morphological, architectural, growth, and phenotypic characteristics. We also demonstrate that the nano-biofilm microarray is a robust and efficient tool for accelerating the drug discovery process: (i) combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, and (ii) screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allows for miniaturization of microbial cell culture and is fully compatible with other high-throughput screening technologies. IMPORTANCE Microorganisms are typically still grown in petri dishes, test tubes, and Erlenmeyer flasks in spite of the latest advances in miniaturization that have benefitted other allied research fields, including genomics and proteomics. Culturing microorganisms in small scale can be particularly valuable in cutting down time, cost, and reagent usage. This paper describes the development, characterization, and application of nanoscale culture of an opportunistic fungal pathogen, Candida albicans. Despite a more than 2,000-fold reduction in volume, the growth characteristics and drug response profiles obtained from the nanoscale cultures were comparable to the industry standards. The platform also enabled rapid identification of new drug candidates that were effective against C. albicans biofilms, which are a major cause of mortality in hospital-acquired infections.


mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Shannon K. Esher ◽  
Kyla S. Ost ◽  
Lukasz Kozubowski ◽  
Dong-Hoon Yang ◽  
Min Su Kim ◽  
...  

ABSTRACT Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus. Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus.


Sign in / Sign up

Export Citation Format

Share Document