scholarly journals Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Volker Winstel ◽  
Olaf Schneewind ◽  
Dominique Missiakas

ABSTRACT Staphylococcus aureus is a deadly pathogen that causes fatal diseases in humans. During infection, S. aureus secretes nuclease (Nuc) and adenosine synthase A (AdsA) to generate cytotoxic deoxyadenosine (dAdo) from neutrophil extracellular traps which triggers noninflammatory apoptosis in macrophages. In this manner, replicating staphylococci escape phagocytic killing without alerting the immune system. Here, we show that mice lacking caspase-3 in immune cells exhibit increased resistance toward S. aureus. Caspase-3-deficient macrophages are resistant to staphylococcal dAdo and gain access to abscess lesions to promote bacterial clearance in infected animals. We identify specific single nucleotide polymorphisms in CASP3 as candidate human resistance alleles that protect macrophages from S. aureus-derived dAdo, raising the possibility that the allelic repertoire of caspase-3 may contribute to the outcome of S. aureus infections in humans. IMPORTANCE Caspase-3 controls the apoptotic pathway, a form of programmed cell death designed to be immunologically silent. Polymorphisms leading to reduced caspase-3 activity are associated with variable effects on tumorigenesis and yet arise frequently. Staphylococcus aureus is a human commensal and a frequent cause of soft tissue and bloodstream infections. Successful commensalism and virulence can be explained by the secretion of a plethora of immune evasion factors. One such factor, AdsA, destroys phagocytic cells by exploiting the apoptotic pathway. However, human CASP3 variants with loss-of-function alleles shield phagocytes from AdsA-mediated killing. This finding raises the possibility that some caspase-3 alleles may arise from exposure to S. aureus and other human pathogens that exploit the apoptotic pathway for infection.

2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


2015 ◽  
Vol 59 (6) ◽  
pp. 3585-3587 ◽  
Author(s):  
Tetsuo Yamaguchi ◽  
Shingo Suzuki ◽  
Sakiko Okamura ◽  
Yuri Miura ◽  
Ayaka Tsukimori ◽  
...  

ABSTRACTWe obtained a series of methicillin-resistantStaphylococcus aureusisolates, including both daptomycin-susceptible strain TD1 and daptomycin-resistant strain TD4, from a patient. We determined the complete genome sequences of TD1 and TD4 using next-generation sequencing, and only four single-nucleotide polymorphisms (SNPs) were identified, one each incapB(E58K),rpoB(H481Y),lytN(I16V), andmprF(V351E). We determined that these four SNPs were sufficient to cause the strains to develop daptomycin, vancomycin, and rifampin resistance.


2015 ◽  
Vol 59 (8) ◽  
pp. 4930-4937 ◽  
Author(s):  
Arnold S. Bayer ◽  
Nagendra N. Mishra ◽  
Liang Chen ◽  
Barry N. Kreiswirth ◽  
Aileen Rubio ◽  
...  

ABSTRACTMprF is responsible for the lysinylation of phosphatidylglycerol (PG) to synthesize the positively charged phospholipid (PL) species, lysyl-PG (L-PG). It has been proposed that the single-nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) are associated with a gain-in-function phenotype in terms of daptomycin resistance inStaphylococcus aureus. (Note that although the official term is daptomycin nonsusceptibility, we use the term daptomycin resistance in this paper for ease of presentation.) Using 22 daptomycin-susceptible (DAPs)/daptomycin-resistant (DAPr) clinical methicillin-resistantS. aureus(MRSA) strain pairs, we assessed (i) the frequencies and distribution of putativemprFgain-in-function SNPs, (ii) the relationships of the SNPs to both daptomycin resistance and cross-resistance to the prototypical endovascular host defense peptide (HDP) thrombin-induced platelet microbicidal protein (tPMP), and (iii) the impact ofmprFSNPs on positive surface charge phenotype and modifications of membrane PL profiles. Most of themprFSNPs identified in our DAPrstrains were clustered within the two MprF loci, (i) the central bifunctional domain and (ii) the C-terminal synthase domain. Moreover, we were able to correlate the presence and location ofmprFSNPs in DAPrstrains with HDP cross-resistance, positive surface charge, and L-PG profiles. Although DAPrstrains withmprFSNPs in the bifunctional domain showed higher resistance to tPMPs than DAPrstrains with SNPs in the synthase domain, this relationship was not observed in positive surface charge assays. These results demonstrated that both charge-mediated and -unrelated mechanisms are involved in DAP resistance and HDP cross-resistance inS. aureus.


2016 ◽  
Vol 60 (11) ◽  
pp. 6928-6932 ◽  
Author(s):  
Sun Hee Lee ◽  
Wan Beom Park ◽  
Shinwon Lee ◽  
Sohee Park ◽  
Shin Woo Kim ◽  
...  

ABSTRACTSome proportion of type AblaZgene-positive methicillin-susceptibleStaphylococcus aureusstrains exhibit the cefazolin inoculum effect (CIE). The type AblaZgene was divided into two groups by single nucleotide polymorphisms (SNPs) at Ser226Pro and Cys229Tyr. The median cefazolin MICs at a high inoculum concentration were 5.69 μg/ml for the Ser-Cys group and 40.32 μg/ml for the Pro-Tyr group (P= 0.01). The SNPs at codons 226 and 229 in the amino acid sequence encoded by theblaZgene were closely associated with the CIE.


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
Devon L. Allison ◽  
Nina Scheres ◽  
Hubertine M. E. Willems ◽  
Carolien S. Bode ◽  
Bastiaan P. Krom ◽  
...  

ABSTRACT Invasive Staphylococcus aureus infections account for 15 to 50% of fatal bloodstream infections annually. These disseminated infections often arise without a defined portal of entry into the host but cause high rates of mortality. The fungus Candida albicans and the Gram-positive bacterium S. aureus can form polymicrobial biofilms on epithelial tissue, facilitated by the C. albicans adhesin encoded by ALS3. While a bacterium-fungus interaction is required for systemic infection, the mechanism by which bacteria disseminate from the epithelium to internal organs is unclear. In this study, we show that highly immunogenic C. albicans hyphae attract phagocytic cells, which rapidly engulf adherent S. aureus and subsequently migrate to cervical lymph nodes. Following S. aureus-loaded phagocyte translocation from the mucosal surface, S. aureus produces systemic disease with accompanying morbidity and mortality. Our results suggest a novel role for the host in facilitating a bacterium-fungus infectious synergy, leading to disseminated staphylococcal disease.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guanghui An ◽  
Jiongjiong Chen

Abstract Background Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. Result In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3’region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3’H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3’region of the allele BjMYB113c. Conclusions Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


2015 ◽  
Vol 59 (8) ◽  
pp. 4497-4503 ◽  
Author(s):  
Katie E. Barber ◽  
Jordan R. Smith ◽  
Cortney E. Ireland ◽  
Blaise R. Boles ◽  
Warren E. Rose ◽  
...  

ABSTRACTAnnually, medical device infections are associated with >250,000 catheter-associated bloodstream infections (CLABSI), with up to 25% mortality.Staphylococcus aureus, a primary pathogen in these infections, is capable of biofilm production, allowing organism persistence in harsh environments, offering antimicrobial protection. With increases inS. aureusisolates with reduced susceptibility to current agents, ceftaroline (CPT) offers a therapeutic alternative. Therefore, we evaluated whether CPT would have a role against biofilm-producing methicillin-resistantS. aureus(MRSA), including those with decreased susceptibilities to alternative agents. In this study, we investigated CPT activity alone or combined with daptomycin (DAP) or rifampin (RIF) against 3 clinical biofilm-producing MRSA strains in anin vitrobiofilm pharmacokinetic/pharmacodynamic (PK/PD) model. Simulated antimicrobial regimens were as follows: 600 mg of CPT every 8 h (q8h) (free maximum concentration of drug [fCmax], 17.04 mg/liter; elimination half-life [t1/2], 2.66 h), 12 mg/kg of body weight/day of DAP (fCmax, 14.7 mg/liter;t1/2, 8 h), and 450 mg of RIF q12h (fCmax, 3.5 mg/liter;t1/2, 3.4 h), CPT plus DAP, and CPT plus RIF. Samples were obtained and plated to determine colony counts. Differences in log10CFU/cm2were evaluated by analysis of variance with Tukey'spost hoctest. The strains were CPT and vancomycin susceptible and DAP nonsusceptible (DNS). CPT displayed activity throughout the experiment. DAP demonstrated initial activity with regrowth at 24 h in all strains. RIF was comparable to the drug-free control, and little benefit was observed when combined with CPT. CPT plus DAP displayed potent activity, with an average log10CFU/cm2reduction of 3.33 ± 1.01 from baseline. CPT demonstrated activity against biofilm-producing DNS MRSA. CPT plus DAP displayed therapeutic enhancement over monotherapy, providing a potential option for difficult-to-treat medical device infections.


2016 ◽  
Vol 60 (10) ◽  
pp. 6333-6340 ◽  
Author(s):  
Binh An Diep ◽  
Vien T. M. Le ◽  
Zehra C. Visram ◽  
Harald Rouha ◽  
Lukas Stulik ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality.S. aureusstrains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role inS. aureuspathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbitS. aureusmodels. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureustherapeutic approaches.


2014 ◽  
Vol 80 (14) ◽  
pp. 4398-4413 ◽  
Author(s):  
Sam Crauwels ◽  
Bo Zhu ◽  
Jan Steensels ◽  
Pieter Busschaert ◽  
Gorik De Samblanx ◽  
...  

ABSTRACTBrettanomycesyeasts, with the speciesBrettanomyces(Dekkera)bruxellensisbeing the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However,B. bruxellensisis also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance,Brettanomycesyeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50Brettanomycesstrains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between theB. bruxellensisfingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate ofB. bruxellensis(VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminateBrettanomycesstrains and provides a first glimpse at the genetic diversity and genome plasticity ofB. bruxellensis.


2021 ◽  
Vol 89 (4) ◽  
Author(s):  
Akosiererem S. Sokaribo ◽  
Lindsay R. Balezantis ◽  
Keith D. MacKenzie ◽  
Yejun Wang ◽  
Melissa B. Palmer ◽  
...  

ABSTRACT Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S. Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3′,5′)-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.


Sign in / Sign up

Export Citation Format

Share Document