scholarly journals Drug-Resistant Epimutants Exhibit Organ-Specific Stability and Induction during Murine Infections Caused by the Human Fungal Pathogen Mucor circinelloides

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Zanetta Chang ◽  
Joseph Heitman

ABSTRACT The environmentally ubiquitous fungus Mucor circinelloides is a primary cause of the emerging disease mucormycosis. Mucor infection is notable for causing high morbidity and mortality, especially in immunosuppressed patients, while being inherently resistant to the majority of clinically available antifungal drugs. A new, RNA interference (RNAi)-dependent, and reversible epigenetic mechanism of antifungal resistance—epimutation—was recently discovered in M. circinelloides. However, the effects of epimutation in a host-pathogen setting were unknown. We employed a systemic, intravenous murine model of Mucor infection to elucidate the potential impact of epimutation in vivo. Infection with an epimutant strain resistant to the antifungal agents FK506 and rapamycin revealed that the epimutant-induced drug resistance was stable in vivo in a variety of different organs and tissues. Reversion of the epimutant-induced drug resistance was observed to be more rapid in isolates from the brain than in isolates recovered from the liver, spleen, kidney, or lungs. Importantly, infection with a wild-type strain of Mucor led to increased rates of epimutation after strains were recovered from organs and exposed to FK506 stress in vitro. Once again, this effect was more pronounced in strains recovered from the brain than from other organs. In summary, we report the rapid induction and reversion of RNAi-dependent drug resistance after in vivo passage through a murine model, with pronounced impact in strains recovered from brain. Defining the role played by epimutation in drug resistance and infection advances our understanding of Mucor and other fungal pathogens and may have implications for antifungal therapy. IMPORTANCE The emerging fungal pathogen Mucor circinelloides causes a severe infection, mucormycosis, which leads to considerable morbidity and mortality. Treatment of Mucor infection is challenging because Mucor is inherently resistant to nearly all clinical antifungal agents. An RNAi-dependent and reversible mechanism of antifungal resistance, epimutation, was recently reported for Mucor. Epimutation has not been studied in vivo, and it was unclear whether it would contribute to antifungal resistance observed clinically. We demonstrate that epimutation can both be induced and reverted after in vivo passage through a mouse; rates of both induction and reversion are higher after brain infection than after infection of other organs (liver, spleen, kidneys, or lungs). Elucidating the roles played by epimutation in drug resistance and infection will improve our understanding of Mucor and other fungal pathogens and may have implications for antifungal treatment.

2019 ◽  
Author(s):  
Zanetta Chang ◽  
Joseph Heitman

ABSTRACTThe environmentally ubiquitous fungus Mucor circinelloides is a primary cause of the emerging disease mucormycosis. Mucor infection is notable for causing high morbidity and mortality, especially in immunosuppressed patients, while being inherently resistant to the majority of clinically available antifungal drugs. A new, RNAi-dependent, and reversible epigenetic mechanism of antifungal resistance – epimutation - was recently discovered in M. circinelloides. However, the effects of epimutation in a host-pathogen setting were unknown. We employed a systemic, intravenous murine model of Mucor infection to elucidate the potential impact of epimutation in vivo. Infection with an epimutant strain resistant to the antifungal agents FK506 and rapamycin revealed that the epimutant-induced drug resistance was stable in vivo in a variety of different organs and tissues. Reversion of the epimutant-induced drug resistance was observed to be more rapid in isolates from the brain, as compared to those recovered from the liver, spleen, kidney, or lungs. Importantly, infection with a wild-type strain of Mucor led to increased rates of epimutation after strains were recovered from organs and exposed to FK506 stress in vitro. Once again, this effect was more pronounced in strains recovered from the brain than from other organs. In summary, we report the rapid induction and reversion of RNAi-dependent drug resistance after in vivo passage through a murine model, with pronounced impact in strains recovered from brain. Defining the role played by epimutation in drug resistance and infection advances our understanding of Mucor and other fungal pathogens, and may have implications for antifungal therapy.IMPORTANCEThe emerging fungal pathogen Mucor circinelloides causes a severe infection, mucormycosis, which leads to considerable morbidity and mortality. Treatment of Mucor infection is challenging because Mucor is inherently resistant to nearly all clinical antifungal agents. An RNAi-dependent and reversible mechanism of antifungal resistance, epimutation, was recently described in Mucor. Epimutation has not been studied in vivo and it was unclear whether it would contribute to antifungal resistance observed clinically. We demonstrate that epimutation can be both induced and reverted after in vivo passage through a mouse model; rates of both induction and reversion are higher after brain infection than after infection of other organs (liver, spleen, kidneys, or lungs). Elucidating the roles played by epimutation in drug resistance and infection will improve our understanding of Mucor and other fungal pathogens, and may have implications for antifungal treatment.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Jennifer Scott ◽  
Monica Sueiro-Olivares ◽  
Benjamin P. Thornton ◽  
Rebecca A. Owens ◽  
Howbeer Muhamadali ◽  
...  

ABSTRACT There is an urgent need to develop novel antifungals to tackle the threat fungal pathogens pose to human health. Here, we have performed a comprehensive characterization and validation of the promising target methionine synthase (MetH). We show that in Aspergillus fumigatus the absence of this enzymatic activity triggers a metabolic imbalance that causes a reduction in intracellular ATP, which prevents fungal growth even in the presence of methionine. Interestingly, growth can be recovered in the presence of certain metabolites, which shows that metH is a conditionally essential gene and consequently should be targeted in established infections for a more comprehensive validation. Accordingly, we have validated the use of the tetOFF genetic model in fungal research and improved its performance in vivo to achieve initial validation of targets in models of established infection. We show that repression of metH in growing hyphae halts growth in vitro, which translates into a beneficial effect when targeting established infections using this model in vivo. Finally, a structure-based virtual screening of methionine synthases reveals key differences between the human and fungal structures and unravels features in the fungal enzyme that can guide the design of novel specific inhibitors. Therefore, methionine synthase is a valuable target for the development of new antifungals. IMPORTANCE Fungal pathogens are responsible for millions of life-threatening infections on an annual basis worldwide. The current repertoire of antifungal drugs is very limited and, worryingly, resistance has emerged and already become a serious threat to our capacity to treat fungal diseases. The first step to develop new drugs is often to identify molecular targets in the pathogen whose inhibition during infection can prevent its growth. However, the current models are not suitable to validate targets in established infections. Here, we have characterized the promising antifungal target methionine synthase in great detail, using the prominent fungal pathogen Aspergillus fumigatus as a model. We have uncovered the underlying reason for its essentiality and confirmed its druggability. Furthermore, we have optimized the use of a genetic system to show a beneficial effect of targeting methionine synthase in established infections. Therefore, we believe that antifungal drugs to target methionine synthase should be pursued and additionally, we provide a model that permits gaining information about the validity of antifungal targets in established infections.


2019 ◽  
Author(s):  
Zanetta Chang ◽  
R. Blake Billmyre ◽  
Soo Chan Lee ◽  
Joseph Heitman

Mucormycosis - an emergent, deadly fungal infection - is difficult to treat, in part because the causative species demonstrate broad clinical antifungal resistance. However, the mechanisms underlying drug resistance in these infections remain poorly understood. Our previous work demonstrated that one major agent of mucormycosis, Mucor circinelloides, can develop resistance to the antifungal agents FK506 and rapamycin through a novel, transient RNA interference-dependent mechanism known as epimutation. Epimutations silence the drug target gene and are selected by drug exposure; the target gene is re-expressed and sensitivity is restored following passage without drug. This silencing process involves generation of small RNA (sRNA) against the target gene via core RNAi pathway proteins. To further elucidate the role of epimutation in the broad antifungal resistance of Mucor, epimutants were isolated that confer resistance to another antifungal agent, 5-fluoroorotic acid (5-FOA). We identified epimutant strains that exhibit resistance to 5-FOA without mutations in PyrF or PyrG, enzymes which convert 5-FOA into the active toxic form. Using sRNA hybridization as well as sRNA library analysis, we demonstrate that these epimutants harbor sRNA against either pyrF or pyrG, and further show that this sRNA is lost after reversion to drug sensitivity. We conclude that epimutation is a mechanism capable of targeting multiple genes, enabling Mucor to develop resistance to a variety of antifungal agents. Elucidation of the role of RNAi in epimutation affords a fuller understanding of mucormycosis. Furthermore, it improves our understanding of fungal pathogenesis and adaptation to stresses, including the evolution of drug resistance.


mBio ◽  
2021 ◽  
Author(s):  
Ji-Seok Kim ◽  
Kyung-Tae Lee ◽  
Myung Ha Lee ◽  
Eunji Cheong ◽  
Yong-Sun Bahn

Despite the recently growing concern of pan-resistant Candida auris infection, the pathogenicity of this ascomycetous fungal pathogen and the signaling circuitries governing its resistance to antifungal drugs are largely unknown. Therefore, we analyzed the pathobiological functions of cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway in C. auris , which plays conserved roles in the growth and virulence of fungal pathogens.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e02529-18 ◽  
Author(s):  
Sang Hu Kim ◽  
Kali R. Iyer ◽  
Lakhansing Pardeshi ◽  
José F. Muñoz ◽  
Nicole Robbins ◽  
...  

ABSTRACT Candida auris is an emerging fungal pathogen and a serious global health threat as the majority of clinical isolates display elevated resistance to currently available antifungal drugs. Despite the increased prevalence of C. auris infections, the mechanisms governing drug resistance remain largely elusive. In diverse fungi, the evolution of drug resistance is enabled by the essential molecular chaperone Hsp90, which stabilizes key regulators of cellular responses to drug-induced stress. Hsp90 also orchestrates temperature-dependent morphogenesis in Candida albicans, a key virulence trait. However, the role of Hsp90 in the pathobiology of C. auris remains unknown. In order to study regulatory functions of Hsp90 in C. auris, we placed HSP90 under the control of a doxycycline-repressible promoter to enable transcriptional repression. We found that Hsp90 is essential for growth in C. auris and that it enables tolerance of clinical isolates with respect to the azoles, which inhibit biosynthesis of the membrane sterol ergosterol. High-level azole resistance was independent of Hsp90 but dependent on the ABC transporter CDR1, deletion of which resulted in abrogated resistance. Strikingly, we discovered that C. auris undergoes a morphogenetic transition from yeast to filamentous growth in response to HSP90 depletion or cell cycle arrest but not in response to other cues that induce C. albicans filamentation. Finally, we observed that this developmental transition is associated with global transcriptional changes, including the induction of cell wall-related genes. Overall, this report provides a novel insight into mechanisms of drug tolerance and resistance in C. auris and describes a developmental transition in response to perturbation of a core regulator of protein homeostasis. IMPORTANCE Fungal pathogens pose a serious threat to public health. Candida auris is an emerging fungal pathogen that is often resistant to commonly used antifungal drugs. However, the mechanisms governing drug resistance and virulence in this organism remain largely unexplored. In this study, we adapted a conditional expression system to modulate the transcription of an essential gene, HSP90, which regulates antifungal resistance and virulence in diverse fungal pathogens. We showed that Hsp90 is essential for growth in C. auris and is important for tolerance of the clinically important azole antifungals, which block ergosterol biosynthesis. Further, we established that the Cdr1 efflux transporter regulates azole resistance. Finally, we discovered that C. auris transitions from yeast to filamentous growth in response to Hsp90 inhibition, accompanied by global transcriptional remodeling. Overall, this work provides a novel insight into mechanisms regulating azole resistance in C. auris and uncovers a distinct developmental program regulated by Hsp90.


mBio ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Marie Desnos-Ollivier ◽  
Sweta Patel ◽  
Adam R. Spaulding ◽  
Caroline Charlier ◽  
Dea Garcia-Hermoso ◽  
...  

ABSTRACTKoch’s postulates are criteria establishing a causal relationship between a microbe and a disease that lead to the assumption that diseases are caused by a single strain or its evolved forms.Cryptococcus neoformansis a life-threatening human fungal pathogen responsible for an estimated 1 million cases of cryptococcosis/year, predominantly meningoencephalitis. To assess the molecular diversity of clinical isolates and gain knowledge ofC. neoformansbiology in the host, we analyzed clinical cultures collected during the prospective CryptoA/D study. Using molecular analysis of unpurified isolates, we demonstrated that mixed infections in humans are more common than previously thought, occurring in almost 20% of patients diagnosed with cryptococcosis. These mixed infections are composed of different mating types, serotypes, and/or genotypes. We also identified genetically related haploid and diploid strains in the same patients. Experimental infections and quantitative PCR show that these ploidy changes can result from endoreplication (duplication of DNA content) and that shuttling between haploid and diploid states can occur, suggestingin vivoevolution. Thus, the concept of one strain/one infection does not hold true forC. neoformansand may apply to other environmentally acquired fungal pathogens. Furthermore, the possibility of mixed and/or evolving infections should be taken into account when developing therapeutic strategies against these pathogens.IMPORTANCECryptococcus  neoformansis a life-threatening human fungal pathogen that is present in the environment and is responsible for an estimated 1 million cases of cryptococcosis/year, predominantly meningoencephalitis in HIV-infected patients. To assess the molecular diversity of clinical isolates and gain knowledge ofC. neoformansbiology in the host, we analyzed clinical cultures collected during a prospective study on cryptococcosis. Using molecular analysis of unpurified isolates, we uncovered an unexpectedly high frequency (almost 20%) of mixed infections. We further demonstrated that these mixed infections could result from infestation by multiple strains acquired from the environment. We also made the serendipitous discovery ofin vivoevolution leading to endoreplication of the yeasts within the host. Thus, the concept of one strain causing one infection does not hold true forC. neoformansand potentially for other environmentally acquired fungal pathogens. The possibility of mixed and/or evolving infections should be taken into account when developing therapeutic strategies against these pathogens.


2015 ◽  
Vol 60 (3) ◽  
pp. 1226-1233 ◽  
Author(s):  
Petros Ioannou ◽  
Aggeliki Andrianaki ◽  
Tonia Akoumianaki ◽  
Irene Kyrmizi ◽  
Nathaniel Albert ◽  
...  

The modestin vitroactivity of echinocandins againstAspergillusimplies that host-related factors augment the action of these antifungal agentsin vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against variousAspergillusspecies under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P= 0. 0005). Importantly, the enhanced activity of caspofungin againstAspergillusspp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinatingAspergillushyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin withAspergillushyphae (P< 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery toAspergillushyphae.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Jennifer Martynowicz ◽  
J. Stone Doggett ◽  
William J. Sullivan

ABSTRACT Toxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing the brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs) and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine-guanabenz showed synergistic efficacy in C57BL/6 mice yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz and ELQ-334 in vivo. While we were unable to completely eliminate the brain cyst burden, we found that a combination treatment with ELQ-334 and pyrimethamine impressively reduced the brain cyst burden by 95% in C57BL/6 mice, which approached the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical studies of cocktail therapies designed to treat chronic toxoplasmosis.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Vaughn S. Cooper ◽  
Erin Honsa ◽  
Hannah Rowe ◽  
Christopher Deitrick ◽  
Amy R. Iverson ◽  
...  

ABSTRACT Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing, it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo. Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of d-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness trade-off between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations that are predicted to affect trace metal transport, central metabolism, and regulation of biofilm production and competence were also selected. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms. IMPORTANCE Evolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms.


1997 ◽  
Vol 41 (6) ◽  
pp. 1345-1348 ◽  
Author(s):  
H Sanati ◽  
C F Ramos ◽  
A S Bayer ◽  
M A Ghannoum

Although there are an increasing number of new antifungal agents available, the morbidity and mortality due to invasive mycoses remain high. The high rates of polyene toxicities and the development of azole resistance have raised the issue of using antifungal agents of these classes in combination, despite theoretical concerns regarding antagonism between such agents. This study was designed to evaluate the in vivo efficacy of combined therapy with amphotericin B and fluconazole against Candida albicans. Two distinct animal models were used in this study: a neutropenic-mouse model of hematogenously disseminated candidiasis and the infective-endocarditis rabbit model. Treatment efficacy was assessed by determining reductions in mortality as well as decreases in tissue fungal densities. In the neutropenic-mouse model, amphotericin B, as well as combination therapy, significantly prolonged survival compared to untreated controls (P < 10(-5) and P = 0.001, respectively). The fungal densities in the kidneys of neutropenic mice were significantly reduced with either amphotericin B monotherapy or amphotericin B-fluconazole combined therapy compared to those of controls (P < 10(-6)). Fluconazole monotherapy also reduced fungal densities in the kidneys; however, this decrease was not statistically significant (P = 0.17). In contrast, treatment with either fluconazole alone or combined with amphotericin B (but not amphotericin B monotherapy) significantly decreased fungal densities in the brain (P = 0.025). In the rabbit endocarditis model, amphotericin B monotherapy or combined therapy significantly decreased fungal densities in cardiac vegetations (P < 0.01 versus the controls). Although no significant antagonism was seen when fluconazole was given in combination with amphotericin B, combination therapy did not augment the antifungal activity of amphotericin B.


Sign in / Sign up

Export Citation Format

Share Document