scholarly journals Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon Thermococcus kodakarensis

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Brett W. Burkhart ◽  
Hallie P. Febvre ◽  
Thomas J. Santangelo

ABSTRACT Control of electron flux is critical in both natural and bioengineered systems to maximize energy gains. Both small molecules and proteins shuttle high-energy, low-potential electrons liberated during catabolism through diverse metabolic landscapes. Ferredoxin (Fd) proteins—an abundant class of Fe-S-containing small proteins—are essential in many species for energy conservation and ATP production strategies. It remains difficult to model electron flow through complicated metabolisms and in systems in which multiple Fd proteins are present. The overlap of activity and/or limitations of electron flux through each Fd can limit physiology and metabolic engineering strategies. Here we establish the interplay, reactivity, and physiological role(s) of the three ferredoxin proteins in the model hyperthermophile Thermococcus kodakarensis. We demonstrate that the three loci encoding known Fds are subject to distinct regulatory mechanisms and that specific Fds are utilized to shuttle electrons to separate respiratory and energy production complexes during different physiological states. The results obtained argue that unique physiological roles have been established for each Fd and that continued use of T. kodakarensis and related hydrogen-evolving species as bioengineering platforms must account for the distinct Fd partnerships that limit flux to desired electron acceptors. Extrapolating our results more broadly, the retention of multiple Fd isoforms in most species argues that specialized Fd partnerships are likely to influence electron flux throughout biology. IMPORTANCE High-energy electrons liberated during catabolic processes can be exploited for energy-conserving mechanisms. Maximal energy gains demand these valuable electrons be accurately shuttled from electron donor to appropriate electron acceptor. Proteinaceous electron carriers such as ferredoxins offer opportunities to exploit specific ferredoxin partnerships to ensure that electron flux to critical physiological pathways is aligned with maximal energy gains. Most species encode many ferredoxin isoforms, but very little is known about the role of individual ferredoxins in most systems. Our results detail that ferredoxin isoforms make largely unique and distinct protein interactions in vivo and that flux through one ferredoxin often cannot be recovered by flux through a different ferredoxin isoform. The results obtained more broadly suggest that ferredoxin isoforms throughout biological life have evolved not as generic electron shuttles, but rather serve as selective couriers of valuable low-potential electrons from select electron donors to desirable electron acceptors.

2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Shin-ichi Hachisuka ◽  
Takaaki Sato ◽  
Haruyuki Atomi

ABSTRACT NAD+ is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD+ is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD+ concentrations and possibly remove and/or reuse undesirable degradation products of NAD+. Here we confirmed that at 85°C, thermal degradation of NAD+ results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD+ in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD+ breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD+ is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal degradation to ADP-ribose and nicotinamide. Here we show that an ADP-ribose pyrophosphatase homolog from the hyperthermophilic archaeon Thermococcus kodakarensis converts the detrimental ADP-ribose to ribose 5-phosphate and AMP, compounds that can be directed to central carbon metabolism. This physiological role for ADP-ribose pyrophosphatases might be universal in hyperthermophiles, as their homologs are widely distributed among both hyperthermophilic bacteria and archaea.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 152 ◽  
Author(s):  
Kanae Kadota ◽  
Riu Furutani ◽  
Amane Makino ◽  
Yuji Suzuki ◽  
Shinya Wada ◽  
...  

Oxygen (O2)-evolving photosynthetic organisms oxidize the reaction center chlorophyll, P700, in photosystem I (PSI) to suppress the production of reactive oxygen species. The oxidation of P700 is accompanied by alternative electron flow in PSI (AEF-I), which is not required for photosynthetic linear electron flow (LEF). To characterize AEF-I, we compared the redox reactions of P700 and ferredoxin (Fd) during the induction of carbon dioxide (CO2) assimilation in wheat leaves, using dark-interval relaxation kinetics analysis. Switching on an actinic light (1000 μmol photons m−2 s−1) at ambient CO2 partial pressure of 40 Pa and ambient O2 partial pressure of 21 kPa gradually oxidized P700 (P700+) and enhanced the reduction rate of P700+ (vP700) and oxidation rate of reduced Fd (vFd). The vFd showed a positive linear relationship with an apparent photosynthetic quantum yield of PSII (Y[II]) originating at point zero; the redox turnover of Fd is regulated by LEF via CO2 assimilation and photorespiration. The vP700 also showed a positive linear relationship with Y(II), but the intercept was positive, not zero. That is, the electron flux in PSI included the electron flux in AEF-I in addition to that in LEF. This indicates that the oxidation of P700 induces AEF-I. We propose a possible mechanism underlying AEF-I and its physiological role in the mitigation of oxidative damage.


2011 ◽  
Vol 77 (13) ◽  
pp. 4647-4656 ◽  
Author(s):  
A. Sundararajan ◽  
J. Kurowski ◽  
T. Yan ◽  
D. M. Klingeman ◽  
M. P. Joachimiak ◽  
...  

ABSTRACTAlthough little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) inShewanella oneidensisMR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of differentc-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, includingc-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia inS. oneidensisMR-1.


Author(s):  
K. Izui ◽  
S. Furuno ◽  
H. Otsu ◽  
T. Nishida ◽  
H. Maeta

Anisotropy of damage productions in crystals due to high energy electron bombardment are caused from two different origins. One is an anisotropic displacement threshold energy, and the other is an anisotropic distribution of electron flux near the atomic rows in crystals due to the electron channeling effect. By the n-beam dynamical calculations for germanium and molybdenum we have shown that electron flux at the atomic positions are from ∽4 to ∽7 times larger than the mean incident flux for the principal zone axis directions of incident 1 MeV electron beams, and concluded that such a locally increased electron flux results in an enhanced damage production. The present paper reports the experimental evidence for the enhanced damage production due to the locally increased electron flux and also the results of measurements of the displacement threshold energies for the <100>,<110> and <111> directions in molybdenum crystals by using a high voltage electron microscope.


2020 ◽  
Author(s):  
Colin R. Bridges ◽  
Andryj M. Borys ◽  
Vanessa Béland ◽  
Joshua R. Gaffen ◽  
Thomas Baumgartner

Low molecular weight organic molecules that can accept multiple electrons at high<br>reduction potentials are sought after as electrode materials for high-energy sustainable batteries. To date their synthesis has been difficult, and organic scaffolds for electron donors significantly outnumber electron acceptors. Herein, we report two highly electron deficient phosphaviologen derivatives from a phosphorus-bridged 4,4-bipyridine and characterize their electrochemical properties. Phosphaviologen sulfide (PVS) and P-methyl phosphaviologen (PVM) accept two and three electrons at high reduction potentials, respectively. PVM can reversibly accept 3 electrons between 3-3.6 V vs. Li/Li+ with an equivalent molecular weight of 102 g/(mol e-) (262 mAh/g), making it a promising scaffold for sustainable organic electrode materials having high specific energy densities.


2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


2021 ◽  
Vol 63 (9) ◽  
pp. 1615-1621
Author(s):  
V. M. Lisitsyn ◽  
L. A. Lisitsyna ◽  
M. G. Golkovskii ◽  
D. A. Musakhanov ◽  
A. V. Ermolaev

2014 ◽  
Vol 80 (8) ◽  
pp. 2410-2416 ◽  
Author(s):  
Areen Banerjee ◽  
Ching Leang ◽  
Toshiyuki Ueki ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACTThe development of tools for genetic manipulation ofClostridium ljungdahliihas increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox forC. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported forClostridium perfringens, was investigated. The plasmid pAH2, originally developed forC. perfringenswith agusAreporter gene, functioned as an effective lactose-inducible system inC. ljungdahlii. Lactose induction ofC. ljungdahliicontaining pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression ofadhE130-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression ofadhE1in a strain in whichadhE1and theadhE1homologadhE2had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression ofadhE2similarly failed to restore ethanol production, suggesting thatadhE1is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.


2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


Sign in / Sign up

Export Citation Format

Share Document