scholarly journals Functional Analysis of p53 Binding under Differential Stresses

2006 ◽  
Vol 26 (19) ◽  
pp. 7030-7045 ◽  
Author(s):  
Adam J. Krieg ◽  
Ester M. Hammond ◽  
Amato J. Giaccia

ABSTRACT Hypoxia and DNA damage stabilize the p53 protein, but the subsequent effect that each stress has on transcriptional regulation of known p53 target genes is variable. We have used chromatin immunoprecipitation followed by CpG island (CGI) microarray hybridization to identify promoters bound by p53 under both DNA-damaging and non-DNA-damaging conditions in HCT116 cells. Using gene-specific PCR analysis, we have verified an association with CGIs of the highest enrichment (>2.5-fold) (REV3L, XPMC2H, HNRPUL1, TOR1AIP1, glutathione peroxidase 1, and SCFD2), with CGIs of intermediate enrichment (>2.2-fold) (COX7A2L, SYVN1, and JAG2), and with CGIs of low enrichment (>2.0-fold) (MYC and PCNA). We found little difference in promoter binding when p53 is stabilized by these two distinctly different stresses. However, expression of these genes varies a great deal: while a few genes exhibit classical induction with adriamycin, the majority of the genes are unchanged or are mildly repressed by either hypoxia or adriamycin. Further analysis using p53 mutated in the core DNA binding domain revealed that the interaction of p53 with CGIs may be occurring through both sequence-dependent and -independent mechanisms. Taken together, these experiments describe the identification of novel p53 target genes and the subsequent discovery of distinctly different expression phenomena for p53 target genes under different stress scenarios.

2000 ◽  
Vol 279 (4) ◽  
pp. G827-G836 ◽  
Author(s):  
Charles R. Scoggins ◽  
Ingrid M. Meszoely ◽  
Michihiko Wada ◽  
Anna L. Means ◽  
Liying Yang ◽  
...  

The mechanisms linking acinar cell apoptosis and ductal epithelial proliferation remain unknown. To determine the relationship between these events, pancreatic duct ligation (PDL) was performed on p53(+/+) and p53(−/−) mice. In mice bearing a wild-type p53 allele, PDL resulted in upregulation of p53 protein in both acinar cells and proliferating duct-like epithelium. In contrast, upregulation of Bcl-2 occurred only in duct-like epithelium. Both p21WAF1/CIP1 and Bax were also upregulated in duct-ligated lobes. After PDL in p53(+/+) mice, acinar cells underwent widespread apoptosis, while duct-like epithelium underwent proliferative expansion. In the absence of p53, upregulation of p53 target genes and acinar cell apoptosis did not occur. The absence of acinar cell apoptosis in p53(−/−) mice also eliminated the proliferative response to duct ligation. These data demonstrate that PDL-induced acinar cell apoptosis is a p53-dependent event and suggest a direct link between acinar cell apoptosis and proliferation of duct-like epithelium in duct-ligated pancreas.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 492 ◽  
Author(s):  
Su-Been Lee ◽  
Sangsun Lee ◽  
Ji-Young Park ◽  
Sun-Young Lee ◽  
Ho-Shik Kim

Prostaglandin (PG) A2, one of cyclopentenone PGs, is known to induce activation of apoptosis in various cancer cells. Although PGA2 has been reported to cause activation of apoptosis by altering the expression of apoptosis-related genes, the role of p53, one of the most critical pro-apoptotic genes, on PGA2-induced apoptosis has not been clarified yet. To address this issue, we compared the apoptosis in HCT116 p53 null cells (HCT116 p53-/-) to that in HCT116 cells containing the wild type p53 gene. Cell death induced by PGA2 was associated with phosphorylation of histone H2A variant H2AX (H2AX), activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase 1 in HCT116 cells. Induction of apoptosis in PGA2-treated cells was almost completely prevented by pretreatment with a pan-caspase inhibitor, z-VAD-Fmk, or an inhibitor of protein synthesis, cycloheximide. While PGA2 induced apoptosis in HCT116 cells, phosphorylation of p53 and transcriptional induction of p53-target genes such as p21WAF1, PUMA, BAX, NOXA, and DR5 occurred. Besides, pretreatment of pifithrin-α (PFT-α), a chemical inhibitor of p53’s transcriptional activity, interfered with the induction of apoptosis in PGA2-treated HCT116 cells. Pretreatment of NU7441, a small molecule inhibitor of DNA-activated protein kinase (DNA-PK) suppressed PGA2-induced phosphorylation of p53 and apoptosis as well. Moreover, among target genes of p53, knockdown of DR5 expression by RNA interference, suppressed PGA2-induced apoptosis. In the meanwhile, in HCT116 p53-/- cells, PGA2 induced apoptosis in delayed time points and with less potency. Delayed apoptosis by PGA2 in HCT116 p53-/- cells was also associated with phosphorylation of H2AX but was not inhibited by either PFT-α or NU7441. Collectively, these results suggest the following. PGA2 may induce p53-dependent apoptosis in which DNA-PK activates p53, and DR5, a transcriptional target of p53, plays a pivotal role in HCT116 cells. In contrast to apoptosis in HCT116 cells, PGA2 may induce apoptosis in a fashion of less potency, which is independent of p53 and DNA-PK in HCT116 p53-/- cells


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1148 ◽  
Author(s):  
Jorge Hernandez-Valencia ◽  
Enrique Garcia-Villa ◽  
Aquetzalli Arenas-Hernandez ◽  
Jaime Garcia-Mena ◽  
Jose Diaz-Chavez ◽  
...  

Resistance to cisplatin (CDDP) is a major cause of cancer treatment failure, including human breast cancer. The tumor suppressor protein p53 is a key factor in the induction of cell cycle arrest, DNA repair, and apoptosis in response to cellular stimuli. This protein is phosphorylated in serine 15 and serine 20 during DNA damage repair or in serine 46 to induce apoptosis. Resveratrol (Resv) is a natural compound representing a promising chemosensitizer for cancer treatment that has been shown to sensitize tumor cells through upregulation and phosphorylation of p53 and inhibition of RAD51. We developed a CDDP-resistant MCF-7 cell line variant (MCF-7R) to investigate the effect of Resv in vitro in combination with CDDP over the role of p53 in overcoming CDDP resistance in MCF-7R cells. We have shown that Resv induces sensitivity to CDDP in MCF-7 and MCF-7R cells and that the downregulation of p53 protein expression and inhibition of p53 protein activity enhances resistance to CDDP in both cell lines. On the other hand, we found that Resv induces serine 20 (S20) phosphorylation in chemoresistant cells to activate p53 target genes such as PUMA and BAX, restoring apoptosis. It also changed the ratio between BCL-2 and BAX, where BCL-2 protein expression was decreased and at the same time BAX protein was increased. Interestingly, Resv attenuates CDDP-induced p53 phosphorylation in serine 15 (S15) and serine 46 (S46) probably through dephosphorylation and deactivation of ATM. It also activates different kinases, such as CK1, CHK2, and AMPK to induce phosphorylation of p53 in S20, suggesting a novel mechanism of p53 activation and chemosensitization to CDDP.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 772-772
Author(s):  
Jing Qi ◽  
Sandeep Singh ◽  
Qi Cai ◽  
Hongjun Liu ◽  
Hieu Vu ◽  
...  

Abstract Abstract 772 Chromosomal inversion inv(16)(p13.1q22) is found in approximately 12% of acute myeloid leukemia (AML) patients, and leads to the fusion of the transcription factor gene CBFb and the MYH11 gene, and encodes a fusion protein CBFβ-SMMHC. Previous studies revealed that CBFβ-SMMHC is a dominant inhibitor of core-binding factor (CBF) function, and impairs hematopoietic differentiation. Expression of CBFβ-SMMHC predisposes for leukemia transformation, however, the molecular mechanism underlying the leukemogenic function of CBFβ-SMMHC remains elusive. The tumor suppressor p53 is considered the master genomic guardian that is frequently mutated in a wide variety of tumors but is rarely mutated in inv(16) AML. Thus, we examined whether CBFβ-SMMHC fusion protein might impair p53 function. We found that p53 acetylation (Ac-p53) level was reduced in the presence of CBFβ-SMMHC fusion protein in the myeloid progenitor 32D cell line as well as in primary pre-leukemic bone marrow progenitor cells isolated from our conditional Cbfb-MYH11 knock-in (Cbfb56M/+/Mx1-Cre) mice (Kuo et al, Cancer Cell 2006, 9:1,57-68). We assessed the effect of CBFβ-SMMHC on p53 transcriptional activity by quantitative RT-PCR analysis of p53 target genes including TP53 and p21 Cdkn1a, Mdm2, Bid, Bax, Stag1, LincRNA-p21, Gadd45b in 32D cells. The result showed that expression of these p53 target genes are reduced in the presence of CBFβ-SMMHC fusion protein, consistent with the impaired Ac-p53 by CBFβ-SMMHC. To understand how CBFβ-SMMHC impairs p53 function, we tested whether CBFβ-SMMHC fusion protein might interact with the p53 protein by co-immunoprecipitation (co-IP) assays. We found that CBFβ-SMMHC fusion protein interacts with p53 both in 32D cells and primary bone marrow cells. Although CBFβ-SMMHC fusion protein is detected both in the nucleus and the cytoplasm, the complex with p53 is present exclusively in the nucleus. It has been reported that CBFβ-SMMHC interacts with histone deacetylase 8 (HDAC8) through the C-terminal SMMHC region. Therefore, we assessed the interaction between CBFβ-SMMHC, p53 and HDAC8 in 32D cell line by co-IP and sequential co-IP. We were able to detect a multimeric protein complex containing CBFβ-SMMHC, p53, and Hdac8. To access whether HDAC8 contributes to the deacetylation of p53, we used two independent small-hairpin (sh)-RNA to knock-down Hdac8 in 32D-CBFβ-SMMHC cells. Hdac8 knock-down led to robust increase in Ac-p53 levels while total p53 levels were modestly stabilized. To test whether this effect is dependent on the deacetylase function of HDAC8, we used HDAC8 selective pharmacological inhibitors (HDAC8i including PCI-34051 and PCI-48012) directed against its catalytic sites (Balasubramanian et al Leukemia 2008, 22:5,1026-34). Treatment with HDAC8i remarkably increased Ac-p53 in both control and CBFβ-SMMHC cells. Since p53 protein levels were also increased upon HDAC8i treatment, we included Mdm2 inhibitor Nutlin-3 to stabilize p53. HDAC8i treatment alone or in combination with Nutlin-3 was able to enhance Ac-p53 compared to Nutlin-3 treatment, confirming its effect in restoring p53 acetylation. Collectively, our study shows that the CBFβ-SMMHC fusion protein forms an aberrant complex with p53 and HDAC8, leading to the aberrant deacetylation and impaired activity of p53. In addition, this deacetylation of p53 conferred by CBFβ-SMMHC is mediated by HDAC8. Our study reveals a novel leukemogenic mechanism in which CBFβ-SMMHC disrupts p53 activation through aberrant protein-protein interaction and recruitment of HDAC8. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 15 (7) ◽  
pp. 766-782 ◽  
Author(s):  
Drew D. Dudgeon ◽  
Sunita Shinde ◽  
Yun Hua ◽  
Tong Ying Shun ◽  
John S. Lazo ◽  
...  

In recent years, advances in structure-based drug design and the development of an impressive variety of high-throughput screening (HTS) assay formats have yielded an expanding list of protein-protein interaction inhibitors. Despite these advances, protein-protein interaction targets are still widely considered difficult to disrupt with small molecules. The authors present here the results from screening 220,017 compounds from the National Institute of Health’s small-molecule library in a novel p53-hDM2 protein-protein interaction biosensor (PPIB) assay. The p53-hDM2 positional biosensor performed robustly and reproducibly throughout the high-content screening (HCS) campaign, and analysis of the multiparameter data from images of the 3 fluorescent channels enabled the authors to identify and eliminate compounds that were cytotoxic or fluorescent artifacts. The HCS campaign yielded 3 structurally related methylbenzo-naphthyridin-5-amine (MBNA) hits with IC50s between 30 and 50 µM in the p53-hDM2 PPIB. In HCT116 cells with wild-type (WT) p53, the MBNAs enhanced p53 protein levels, increased the expression of p53 target genes, caused a cell cycle arrest in G1, induced apoptosis, and inhibited cell proliferation with an IC50 ~4 µM. The prototype disruptor of p53-hDM2 interactions Nutlin-3 was more potent than the MBNAs in the p53-hDM2 PPIB assay but produced equivalent biological results in HCT116 cells WT for p53. Unlike Nutlin-3, however, MBNAs also increased the percentage of apoptosis in p53 null cells and exhibited similar potencies for growth inhibition in isogenic cell lines null for p53 or p21. Neither the MBNAs nor Nutin-3 caused cell cycle arrest in p53 null HCT116 cells. Despite the relatively modest size of the screening library, the combination of a novel p53-hDM2 PPIB assay together with an automated imaging HCS platform and image analysis methods enabled the discovery of a novel chemotype series that disrupts p53-hDM2 interactions in cells.


2021 ◽  
Author(s):  
Nitin Raj ◽  
Mengxiong Wang ◽  
Jose A Seoane ◽  
Nancie A Moonie ◽  
Janos Demeter ◽  
...  

The p53 transcription factor, encoded by the most frequently mutated gene in human cancer, plays a critical role in tissue homeostasis in response to stress signals. The mechanisms through which p53 promotes downstream tumor suppressive gene expression programs remain, however, only superficially understood. Here, we used tandem affinity purification and mass spectrometry to reveal new components of the p53 response. This approach uncovered Mettl3, a component of the m6A RNA methyltransferase complex (MTC), as a p53-interacting protein. Analysis of Mettl3-deficient cells revealed that Mettl3 promotes p53 protein stabilization and target gene expression in response to DNA damage. Mettl3 acts in part by competing with the p53 negative regulator, Mdm2, for binding to the p53 transactivation domains to promote methyltransferase-independent stabilization of p53. In addition, Mettl3 relies on its catalytic activity to augment p53 responses, with p53 recruiting Mettl3 to p53 target genes to co-transcriptionally direct m6A modification of p53 pathway transcripts to enhance their expression. Mettl3 also promotes p53 activity downstream of oncogenic signals in vivo, in both allograft and autochthonous lung adenocarcinoma models, suggesting cooperative action of p53 and Mettl3 in tumor suppression. Accordingly, we found in diverse human cancers that mutations in MTC components perturb expression of p53 target genes and that MTC mutations are mutually exclusive with TP53 mutations, suggesting that the MTC enhances the p53 transcriptional program in human cancer. Together, these studies reveal a fundamental role for Mettl3 in amplifying p53 signaling through protein stabilization and epitranscriptome regulation.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139790 ◽  
Author(s):  
Juanjuan Zhu ◽  
Shanshan Liu ◽  
Fuqiang Ye ◽  
Yuan Shen ◽  
Yi Tie ◽  
...  

2008 ◽  
Vol 294 (1) ◽  
pp. F170-F176 ◽  
Author(s):  
Adebayo D. Akintola ◽  
Zachary L. Crislip ◽  
Jeffrey M. Catania ◽  
Gang Chen ◽  
Warren E. Zimmer ◽  
...  

The cadherins are cell adhesion molecules required for cellular homeostasis, and N-cadherin is the predominant cadherin expressed in proximal tubular epithelial cells in humans and rats. Our laboratory previously reported an age-dependent decrease in renal N-cadherin expression; the levels of N-cadherin mRNA and protein expression decreased in parallel, implicating a transcriptional mechanism in the age-dependent loss of expression ( 19 ). In this study, we examined the hypothesis that promoter hypermethylation underlies the loss of N-cadherin expression in aging rat kidney. We cloned the 5′ flanking region of the rat N-cadherin gene and observed basic promoter activity in a 3,992-bp region localized immediately upstream of the ATG start site. Nucleotide analysis revealed 87% identity with the human N-cadherin minimal promoter region. Consistent with a role for regulation by DNA methylation, we found that a dense CpG island, which spans 1,104 bp (−1,158 to −55), flanks the rat N-cadherin gene; a similar CpG profile was found in the human N-cadherin 5′ flanking region. Methylation-specific PCR analysis demonstrated that the promoter region of N-cadherin is heavily methylated in aged, but not young, rat kidney. Interestingly, the promoter is not methylated in age-matched, calorically restricted animals. In contrast, the promoter region is not methylated in either young or aged rat liver; this corresponds to the finding that aging is not associated with decreased N-cadherin expression in the liver. In addition, N-cadherin expression is markedly induced in NRK-52E cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine, further suggesting that methylation at CpG in the promoter region may underlie the age-dependent decrease in renal N-cadherin expression.


2021 ◽  
Vol 104 (2) ◽  
pp. 87-96
Author(s):  
E. I. Kyrova* ◽  
A. N. Ignatov

Plant pathogenic xanthomonads virulent to wheat, rye, barley, tomato, sunflower, and brassicas were isolated in Russia in 2001–2008. Physiological tests and multilocus sequence typing analysis confirmed their position within the Xanthomonas arboricola species. The obtained draft genome sequence of representative strain 3004 from barley plants, which is also virulent to sunflower, brassicas, and chestnut, demonstrated an absence of the Type 3 Secretion System T3SS and an evidence for the lateral gene transfer of some other virulence genes from distantly related bacteria. It was concluded that T4SS genes can be used as the target for group-specific PCR analysis of the emerging pathogen. It was proposed to use virD4, virB3, virB4, and virB9 genes to design a detection system. After preliminary experiments with classic PCR for the chosen genes, primers and TaqMan(R) probe were designed to specifically amplify a 121 bp fragment of the VirD4 gene. Amplification products were obtained for all target Xanthomonas arboricola strains and were not detected in other Xanthomonas species, or in other pathogenic or epiphytic bacteria occurring on these host plants. The assay readily detected Xanthomonas arboricola infection in diseased plants and from bacterial colonies isolated on semi-selective media, and was more sensitive and specific than traditional plating methods.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 397-397
Author(s):  
Liang Li ◽  
Yin Wei Ho ◽  
Ling Li ◽  
Qin Huang ◽  
Min Li ◽  
...  

Abstract Abstract 397 Nrf2 is a basic region-leucine-zipper transcription factor that regulates expression of numerous genes required for oxidative stress response, drug and toxin detoxification, protein ubiquitination, and proteasomal degradation of damaged proteins. Therefore Nrf2 represents a major cellular defense mechanism against oxidative and toxic stresses. We have shown that CD34+ hematopoietic stem/progenitor cells (HSPC) drawn from peripheral blood stem cell (PBSC) autografts of lymphoma patients who develop therapy-related myelodysplasia or acute myeloid leukemia (t-MDS/AML) after autologous hematopoietic cell transplantation (aHCT) demonstrate significantly reduced expression of Nrf2-mediated stress response pathway genes compared to cells from patients who do not develop t-MDS/AML (Cancer Cell 20, 591–605). We have extended these findings to study the role of Nrf2 in HSPC regulation and the response to genotoxic chemotherapeutic agents by using an Nrf2 knockout (KO) mouse model. Nrf2 KO mice demonstrated impaired bone marrow (BM) long-term hematopoietic stem cell (LT-HSC) function, manifested by significantly reduced competitive engraftment of BM cells in recipient mice at 16 weeks compared to wild-type (WT) controls (42.5±2.8% vs. 57.2±3.3% peripheral blood engraftment for KO and WT donors respectively, p<0.01). An even more significant defect in engraftment of KO cells was seen after transplantation to secondary recipients (16.4±1.7% vs. 61.9±1.5% peripheral blood engraftment at 8 weeks for KO and WT donors respectively, p<0.01). Nrf2 KO mice also demonstrated increased sensitivity to ENU treatment compared to WT mice. ENU (100mg/kg) treatment resulted in severe anemia at 7 months in 100% of KO mice compared with 36% of WT mice (p<0.001). Furthermore, anemia developed at a median of 5 months in Nrf2 KO mice compared to 10 months in WT controls. Pathological examination of BM from anemic mice revealed reduced erythropoiesis with impaired erythroid maturation and expansion of myeloid cells, consistent with myeloid dysplasia. Q-RT-PCR analysis demonstrated significantly reduced expression of Nrf2 target genes, including Hmo-1, Nqo-1, Gclc and Gpx1, in BM c-kit+ HSPC from KO mice compared to WT mice (p<0.05). Interestingly, expression of several P53 target genes including Bax, Puma, Cdkn1a and Necdin were also significantly reduced in BM c-kit+ cells from Nrf2 KO compared to WT mice. We also observed reduced P53 target gene expression in Nrf2 KO c-Kit cells compared with WT cells 4 hours after treatment with ENU (p<0.05), indicating impaired P53 response in Nrf2 deficient HSPC. To examine the P53 response to DNA damaging agents in LT-HSC, we exposed Nrf2 KO and WT mice to 2Gy irradiation and selected BM LT-HSC (Lin-Sca-1+c-kit+Flt-3-CD150+CD48-) using flow cytometry 12 hours after irradiation. Q-RT-PCR analysis showed significantly reduced expression of P53 target genes Bax, Puma and Necdin (p<0.05), and a trend towards reduced expression of Cdkn1a (p=0.08), in Nrf2 KO compared to WT LT-HSC. Immunofluorescence microscopy showed significantly reduced nuclear and increased cytoplasmic localization of P53 in Nrf2 KO compared to WT LT-HSC. Western blotting analysis showed increased levels of ubquitinated proteins in BM c-kit+ HSPC from Nrf2 KO compared to WT mice, and immunoprecipitation followed by Western blotting for P53 revealed increased high molecular weight bands indicative of ubiquitinated P53 in Nrf2 KO HSPC. Nrf2 is a key regulator of protein ubiquitination and proteasomal degradation, and these results suggest that abnormal cytoplasmic accumulation of ubiquitinated P53 may contribute to altered P53 function in Nrf2 deficient HSPC. In conclusion, our results show that Nrf2 deficiency results in impaired HSC self-renewal capacity under physiological conditions, and significantly increased sensitivity to genotoxic stress, potentially explained by altered P53 protein modulation in Nrf2 deficient HSPC. These observations suggest that Nrf2 deficiency could contribute to development of t-MDS/AML following exposure to genotoxic agents, and support further evaluation of Nrf2 as a potential target of chemopreventive efforts. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document