scholarly journals Transforming ras proteins accelerate hormone-induced maturation and stimulate cyclic AMP phosphodiesterase in Xenopus oocytes.

1990 ◽  
Vol 10 (4) ◽  
pp. 1689-1696 ◽  
Author(s):  
S E Sadler ◽  
J L Maller ◽  
J B Gibbs

Transforming Harvey (Ha) ras oncogene products accelerated the time course of Xenopus oocyte maturation induced by insulin, insulinlike growth factor 1, or progesterone. The transforming constructs, [Val-12]Ha p21 and [Val-12, Thr-59]Ha p21, displayed equal potency and efficacy in their abilities to accelerate the growth peptide-induced response. Normal Ha p21 was only 60% as powerful and one-fifth as potent as the mutants containing valine in the 12 position. In contrast, two nontransforming constructs, [Val-12, Ala-35, Leu-36, Thr-59]Ha p21 and [Val-12, Thr-59]Ha(term-174) p21, had no effect on the time course of hormone-induced maturation. Effects of the transforming ras proteins on hormone-induced maturation correlated with their abilities to stimulate in vivo phosphodiesterase activity measured after microinjection of 200 microM cyclic [3H] AMP. When p21 injection followed 90 min of insulin treatment, there was no increase in phosphodiesterase activity over that measured after hormone treatment or p21 injection alone, but additive effects of p21 and insulin on enzyme activity were observed during the first 90 min of insulin treatment. Even though normal Ha p21 and transforming [Val-12, Thr-59]Ha p21 stimulated oocyte phosphodiesterase to equal levels when coinjected with substrate at the initiation of the in vivo assay, the transforming protein elicited a more sustained stimulation of enzyme activity. These results suggest that stimulation of a cyclic AMP phosphodiesterase activity associated with insulin-induced maturation is involved in the growth-promoting actions of ras oncogene products in Xenopus oocytes.

1990 ◽  
Vol 10 (4) ◽  
pp. 1689-1696
Author(s):  
S E Sadler ◽  
J L Maller ◽  
J B Gibbs

Transforming Harvey (Ha) ras oncogene products accelerated the time course of Xenopus oocyte maturation induced by insulin, insulinlike growth factor 1, or progesterone. The transforming constructs, [Val-12]Ha p21 and [Val-12, Thr-59]Ha p21, displayed equal potency and efficacy in their abilities to accelerate the growth peptide-induced response. Normal Ha p21 was only 60% as powerful and one-fifth as potent as the mutants containing valine in the 12 position. In contrast, two nontransforming constructs, [Val-12, Ala-35, Leu-36, Thr-59]Ha p21 and [Val-12, Thr-59]Ha(term-174) p21, had no effect on the time course of hormone-induced maturation. Effects of the transforming ras proteins on hormone-induced maturation correlated with their abilities to stimulate in vivo phosphodiesterase activity measured after microinjection of 200 microM cyclic [3H] AMP. When p21 injection followed 90 min of insulin treatment, there was no increase in phosphodiesterase activity over that measured after hormone treatment or p21 injection alone, but additive effects of p21 and insulin on enzyme activity were observed during the first 90 min of insulin treatment. Even though normal Ha p21 and transforming [Val-12, Thr-59]Ha p21 stimulated oocyte phosphodiesterase to equal levels when coinjected with substrate at the initiation of the in vivo assay, the transforming protein elicited a more sustained stimulation of enzyme activity. These results suggest that stimulation of a cyclic AMP phosphodiesterase activity associated with insulin-induced maturation is involved in the growth-promoting actions of ras oncogene products in Xenopus oocytes.


1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


1990 ◽  
Vol 69 (4) ◽  
pp. 1408-1412 ◽  
Author(s):  
N. Kogo ◽  
H. Arita

Using the micro pressure ejection technique, we examined responses of medullary neurons with nonphasic discharges (164 units) to direct application of acidified mock cerebrospinal fluid (CSF, pH 6.85-7.05) in decerebrated spontaneously breathing cats. We found 16 H(+)-sensitive cells; they were excited promptly on application of approximately 500 pl of acidified mock CSF in the vicinity of the neuron under investigation, whereas they were unaffected by microejection of the control mock CSF (pH 7.25-7.60). Of the 16 H(+)-sensitive cells, 10 units were further found to be excited by transcapillary stimulation of the central chemoreceptors by using a method of intravertebral arterial injection of CO2-saturated saline. The discharges increased in a similar time course to that of ventilatory augmentation. Distributions of these 10 specific H(+)-sensitive cells were found in the vicinity of nucleus tractus solitarii as well as deep in the ventrolateral medulla. The present results suggest a possibility that pH-dependent central chemoreceptors, if any, would be located in two distinct medullary regions described in this study.


1985 ◽  
Vol 248 (6) ◽  
pp. E656-E663 ◽  
Author(s):  
D. E. Peavy ◽  
J. M. Taylor ◽  
L. S. Jefferson

Albumin synthesis in rat liver in vivo decreased from 12.7 to 2.2% of total protein synthesis during the first 3 days after the induction of diabetes and then remained relatively constant at this depressed rate for another 3 days. Insulin treatment begun on the 3rd day after the induction of diabetes restored albumin synthesis to control values within 3 days. Hybridization of total polyadenylate-containing RNA with a specific albumin cDNA probe revealed a close correspondence between the relative abundance of albumin mRNA and the relative rate of albumin synthesis after induction of diabetes and in response to insulin treatment. The apparent half-life of albumin mRNA, based on the rate of change of the message from one steady-state level to another, was approximately 22 h in both diabetic and insulin-treated diabetic rats. Diabetes of 3-day duration had no effect on the average sizes of total and albumin-synthesizing polysomes or on the ribosomal half-transit time for total protein and albumin. However, the number of albumin-synthesizing polysomes decreased as a result of diabetes to approximately one-third the number found in control livers. Taken together the results indicate that albumin synthesis was regulated by the availability of albumin mRNA and not by alterations in degradation, sequestration, or translation of message.


1999 ◽  
Vol 96 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Gil ARI ◽  
Yoram VARDI ◽  
John P. M. FINBERG

The purpose of this investigation was to study the time course, response to insulin and characteristics of erectile dysfunction in streptozotocin (STZ)-diabetic Sprague–Dawley rats, and the function of the NO-generating system in these animals. Copulation-induced and reflex erection were quantified in conscious Sprague–Dawley rats at different times after injection of STZ. The corporal vasodilatation response to nerve stimulation was studied by measuring the rise in corporal pressure in pithed rats following electrical stimulation of sacral spinal nerve roots. The activity of NO synthase was determined in corporal tissue by measuring the generation of [3H]citrulline from [3H]arginine. Copulation-induced erection was inhibited at 1 and 2 months after STZ treatment, but this could be prevented by a short (2-week) pretreatment with insulin. Reflex erection was inhibited at 1, 4, 6 and 9 months after STZ; at 6 months, this inhibition was also reversible by insulin pretreatment. Following pithing, the basal corporal pressure was elevated in diabetic rats. At 4 months after STZ, this increase was normalized by a 2-week, but not by a 1-week, pretreatment with insulin; however, at 9 months after STZ, insulin pretreatment did not normalize corporal pressure. The increase in corporal pressure caused by stimulation of sacral nerve roots in pithed rats was enhanced in diabetic animals. This enhancement was also normalized at 4 months, but not at 9 months, by 2 weeks of insulin treatment. The inhibition of the stimulation-induced increase in corporal pressure by NG-nitro-L-arginine methyl ester (5 mg/kg) was less following 9 months of diabetes, although NO synthase activity was normal in cavernosal tissue following 6–8 months of diabetes. In conclusion, STZ-induced diabetes caused changes in the erectile system that were initially reversible by a short insulin treatment, but which with time (more than 6 months) became irreversible. NO synthase activity in cavernosal tissue was normal, but the response to NG-nitro-L-arginine methyl ester was inhibited in long-term diabetes (9 months).


1998 ◽  
Vol 274 (4) ◽  
pp. F753-F761 ◽  
Author(s):  
Hiroshi Miyakawa ◽  
Seung Kyoon Woo ◽  
Ching-Pu Chen ◽  
Stephen C. Dahl ◽  
Joseph S. Handler ◽  
...  

We have previously identified a tonicity-responsive enhancer (TonE) in the promoter region of the canine BGT1 gene. TonE mediates hypertonicity-induced stimulation of transcription. Here, we characterize TonE and TonE binding proteins (TonEBPs) to provide a biochemical basis for cloning of the TonEBPs. Mutational analysis applied to both hypertonicity-induced stimulation of transcription and TonEBP binding reveals that TonE is 11 base pairs in length, with the consensus sequence of (C/T)GGAAnnn(C/T)n(C/T). Activity of the TonEBPs increases in response to hypertonicity with a time course similar to that of transcription of the BGT1 gene. Studies with inhibitors indicate that translation, but not transcription, is required for activation of the TonEBPs. Phosphorylation is required for the stimulation of transcription but not for activation of DNA binding by the TonEBPs. In vivo methylation by dimethyl sulfate reveals that the TonE site of the BGT1 gene is protected with a time course like that of activity of the TonEBPs and activation of transcription. Ultraviolet cross-linking indicates that the TonEBPs share a DNA binding subunit of 200 kDa.


2003 ◽  
Vol 369 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Carsten B. ANDERSEN ◽  
Hiroshi SAKAUE ◽  
Taku NEDACHI ◽  
Kristina S. KOVACINA ◽  
Carol CLAYBERGER ◽  
...  

In the present study, we have characterized the Xenopus Akt expressed in oocytes from the African clawed frog Xenopus laevis and tested whether its activity is required for the insulin- and progesterone-stimulated resumption of meiosis. A cDNA encoding the Xenopus Akt was isolated and sequenced, and its expression in the Xenopus oocyte was confirmed by reverse transcription PCR and Northern blotting. Using phosphospecific antibodies and enzyme assays, a large and rapid activation of the Xenopus Akt was observed upon insulin stimulation of the oocytes. In contrast, progesterone caused a modest activation of this kinase with a slower time course. To test whether the activation of Akt was required in the stimulation of the resumption of meiosis, we have utilized two independent approaches: a functional dominant negative Akt mutant and an inhibitory monoclonal antibody. Both the mutant Akt, as well as the inhibitory monoclonal antibody, completely blocked the insulin-stimulated resumption of meiosis. In contrast, both treatments only partially inhibited (by approx. 30%) the progesterone-stimulated resumption of meiosis when submaximal doses of this hormone were utilized. These data demonstrate a crucial role for Akt in the insulin-stimulated cell cycle progression of Xenopus oocytes, whereas Akt may have an ancillary function in progesterone signalling.


1984 ◽  
Vol 218 (3) ◽  
pp. 849-855 ◽  
Author(s):  
P A Wilce ◽  
L Leijten ◽  
L Martin

The characteristics of 3-hydroxy-3-methylglutaryl-CoA reductase from mouse uterine epithelial cells were studied. Preliminary experiments showed that enzyme activity was stimulated approx. 10-fold 18h after administration of 100ng of oestradiol-17 beta. This activity was associated with all particulate fractions of the uterine luminal cell. The Km for D-3-hydroxy-3-methylglutaryl-CoA was 5.54 +/- 1.12 microM. The detailed time-course of oestrogen stimulation showed two peaks of activity, 9 and 15h after hormone treatment. The DNA content of the epithelial cells doubled between 6 and 12h after hormone treatment, whereas the protein content increased linearly over the 18h period. The peak of enzyme activity at 9h is associated with early S phase of the epithelial cells; the peak at 15h may be associated with a second S phase or with mitosis. Pretreatment with progesterone for 3 days before injection of oestradiol-17 beta (a treatment which inhibits uterine epithelial DNA synthesis) reduced the oestrogenic stimulation of enzyme activity by 63%; progesterone treatment alone did not stimulate enzyme activity. These data suggest that uterine epithelial 3-hydroxy-3-methylglutaryl-CoA reductase may play an important role in the cell cycle in this tissue.


1993 ◽  
Vol 292 (1) ◽  
pp. 303-308 ◽  
Author(s):  
S Pavelka ◽  
J Hermanská ◽  
M Baudysová ◽  
J Houstĕk

Iodothyronine 5′-deiodinase (5′D) of mouse brown adipocytes differentiated in cell culture was characterized in detail with respect to the adrenergic control of its biosynthesis. The stimulation of 5′D required mRNA and protein synthesis and was dependent on the stage of differentiation of the cells. The maximum induction was observed around confluence (7-day-old cells), in pre- and post-confluent cells the 5′D activity was significantly less induced. The transient responsiveness of brown fat-cells to the stimulatory effect of adrenergic agents was reflected also in the time course of the induction of 5′D by different concentrations of agonists. The maximum response occurred regularly after an 8 h incubation and implicated a rather fast turnover of the induced enzyme. On the basis of the inhibitory effects of cycloheximide and actinomycin D, the half-life of the induced 5′D and its mRNA were estimated to be 1.5 and 3.3 h respectively. The noradrenaline-induced 5′D activity was shown to be that of the type II enzyme, insensitive to propylthiouracil (PTU). The estimated values of its apparent Km for thyroxine, Km for the co-substrate dithiothreitol, and Vmax. in the presence of 1 mM PTU were 2 nM, 2.6 mM, and 0.1 pmol of I-/h per mg of protein respectively. The 5′D activity was effectively induced by forskolin and dibutyryl cyclic AMP, as well as by isoprenaline, noradrenaline and CGP-12177, but not by phenylephrine, cirazoline or oxymetazoline. This indicates that, contrary to previous observations in vivo, stimulation of 5′D in cultured brown fat-cells involves elevated cyclic AMP levels and is mediated predominantly via beta-receptors, particularly via the so-called beta 3-adrenoceptors.


2001 ◽  
Vol 21 (12) ◽  
pp. 1384-1392 ◽  
Author(s):  
Albert Gjedde ◽  
Sean Marrett

The regulation of brain energy metabolism during neuronal activation is poorly understood. Specifically, the extent to which oxidative metabolism rather than glycolysis supplies the additional ATP necessary to sustain neuronal activation is in doubt. A recent hypothesis claims that astrocytes generate lactate with the muscle-type lactate dehydrogenase (LDH) isozyme LD5. Lactate from astrocytes then undergoes oxidation in neurons after reconversion to pyruvate by the LDH subtype LD1. On the basis of this hypothesis, the authors predicted that the time course of an excitatory increase of the oxidative metabolism of brain tissue must depend on the degree to which astrocytes provide neurons with pyruvate in the form of lactate. From the known properties of the LDH subtypes, the authors predicted two time courses for the changes of oxygen consumption in response to neuronal stimulation: one reflecting the properties of the neuronal LDH subtype LD1, and the other reflecting the astrocytic LDH subtype LD5. Measuring oxygen consumption (CMR o2) with positron emission tomography, the authors demonstrated increased CMR o2 during sustained stimulation of visual cortex with a complex stimulus. The CMR o2 increased 20.5% after 3 minutes and 27.5% after 8 minutes of stimulation, consistent with a steady-state oxygen–glucose metabolism ratio of 5.3, which is closest to the index predicted for the LD1 subtype. The index is equal to the oxygen–glucose metabolism ratio of 5.5 calculated at baseline, indicating that pyruvate is converted to lactate in a cellular compartment with an LDH reaction closest to that of LD1, whether at rest or during stimulation of the visual cortex with the current stimulus. The findings are consistent with a claim that neurons increase their oxidative metabolism in parallel with an increase of pyruvate, the latter generated by neuronal rather than astrocytic glycolysis.


Sign in / Sign up

Export Citation Format

Share Document