A novel protein factor is required for use of distal alternative 5' splice sites in vitro

1991 ◽  
Vol 11 (12) ◽  
pp. 5945-5953
Author(s):  
J E Harper ◽  
J L Manley

Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.

1991 ◽  
Vol 11 (12) ◽  
pp. 5945-5953 ◽  
Author(s):  
J E Harper ◽  
J L Manley

Adenovirus E1A pre-mRNA was used as a model to examine alternative 5' splice site selection during in vitro splicing reactions. Strong preference for the downstream 13S 5' splice site over the upstream 12S or 9S 5' splice sites was observed. However, the 12S 5' splice site was used efficiently when a mutant pre-mRNA lacking the 13S 5' splice site was processed, and 12S splicing from this substrate was not reduced by 13S splicing from a separate pre-mRNA, demonstrating that 13S splicing reduced 12S 5' splice site selection through a bona fide cis-competition. DEAE-cellulose chromatography of nuclear extract yielded two fractions with different splicing activities. The bound fraction contained all components required for efficient splicing of simple substrates but was unable to utilize alternative 5' splice sites. In contrast, the flow-through fraction, which by itself was inactive, contained an activity required for alternative splicing and was shown to stimulate 12S and 9S splicing, while reducing 13S splicing, when added to reactions carried out by the bound fraction. Furthermore, the activity, which we have called distal splicing factor (DSF), enhanced utilization of an upstream 5' splice site on a simian virus 40 early pre-mRNA, suggesting that the factor acts in a position-dependent, substrate-independent fashion. Several lines of evidence are presented suggesting that DSF is a non-small nuclear ribonucleoprotein protein. Finally, we describe a functional interaction between DSF and ASF, a protein that enhances use of downstream 5' splice sites.


1987 ◽  
Vol 7 (2) ◽  
pp. 738-748 ◽  
Author(s):  
X Y Fu ◽  
J L Manley

To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA.


1987 ◽  
Vol 7 (2) ◽  
pp. 738-748
Author(s):  
X Y Fu ◽  
J L Manley

To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA.


1987 ◽  
Vol 7 (8) ◽  
pp. 3018-3020
Author(s):  
Y Zhuang ◽  
H Leung ◽  
A M Weiner

The use of alternative 5' splice sites in the simian virus 40 early-transcription unit controls the ratio of large T to small t antigen during viral infection. To study the regulation of these alternative 5' splice sites, we made two mutants which improve the match of the large-T-antigen 5' splice site to the 5' splice site consensus sequence. Whether these mutants were assayed in vitro or in vivo, we found that the efficiency of large-T splicing is increased by improving the match of the large-T-antigen 5' splice site to the consensus. We conclude that the match of a 5' splice site is an important determinant of 5' splice site utilization and that the simian virus 40 large-T-antigen 5' splice site is almost certainly recognized by the U1 small nuclear RNA component of the U1 small nuclear ribonucleoprotein particle.


1987 ◽  
Vol 7 (8) ◽  
pp. 3018-3020 ◽  
Author(s):  
Y Zhuang ◽  
H Leung ◽  
A M Weiner

The use of alternative 5' splice sites in the simian virus 40 early-transcription unit controls the ratio of large T to small t antigen during viral infection. To study the regulation of these alternative 5' splice sites, we made two mutants which improve the match of the large-T-antigen 5' splice site to the 5' splice site consensus sequence. Whether these mutants were assayed in vitro or in vivo, we found that the efficiency of large-T splicing is increased by improving the match of the large-T-antigen 5' splice site to the consensus. We conclude that the match of a 5' splice site is an important determinant of 5' splice site utilization and that the simian virus 40 large-T-antigen 5' splice site is almost certainly recognized by the U1 small nuclear RNA component of the U1 small nuclear ribonucleoprotein particle.


1987 ◽  
Vol 7 (1) ◽  
pp. 495-503 ◽  
Author(s):  
L C Ryner ◽  
J L Manley

Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.


1987 ◽  
Vol 7 (1) ◽  
pp. 495-503
Author(s):  
L C Ryner ◽  
J L Manley

Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.


2010 ◽  
Vol 30 (8) ◽  
pp. 1878-1886 ◽  
Author(s):  
Martin J. Hicks ◽  
William F. Mueller ◽  
Peter J. Shepard ◽  
Klemens J. Hertel

ABSTRACT Alternative 5′ splice site selection is one of the major pathways resulting in mRNA diversification. Regulation of this type of alternative splicing depends on the presence of regulatory elements that activate or repress the use of competing splice sites, usually leading to the preferential use of the proximal splice site. However, the mechanisms involved in proximal splice site selection and the thermodynamic advantage realized by proximal splice sites are not well understood. Here, we have carried out a systematic analysis of alternative 5′ splice site usage using in vitro splicing assays. We show that observed rates of splicing correlate well with their U1 snRNA base pairing potential. Weak U1 snRNA interactions with the 5′ splice site were significantly rescued by the proximity of the downstream exon, demonstrating that the intron definition mode of splice site recognition is highly efficient. In the context of competing splice sites, the proximity to the downstream 3′ splice site was more influential in dictating splice site selection than the actual 5′ splice site/U1 snRNA base pairing potential. Surprisingly, the kinetic analysis also demonstrated that an upstream competing 5′ splice site enhances the rate of proximal splicing. These results reveal the discovery of a new splicing regulatory element, an upstream 5′ splice site functioning as a splicing enhancer.


1988 ◽  
Vol 8 (6) ◽  
pp. 2610-2619 ◽  
Author(s):  
D E Lowery ◽  
B G Van Ness

The processing of a number of kappa-immunoglobulin primary mRNA (pre-mRNA) constructs has been examined both in vitro and in vivo. When a kappa-immunoglobulin pre-mRNA containing multiple J segment splice sites is processed in vitro, the splice sites are used with equal frequency. The presence of signal exon, S-V intron, or variable (V) region has no effect on splice site selection in vitro. Nuclear extracts prepared from a lymphoid cell line do not restore correct splice site selection. Splice site selection in vitro can be altered by changing the position or sequence of J splice donor sites. These results differ from the processing of similar pre-mRNAs expressed in vivo by transient transfection. The 5'-most J splice donor site was exclusively selected in vivo, even in nonlymphoid cells, and even in transcripts where in vitro splicing favored a 3' J splice site. The in vitro results are consistent with a model proposing that splice site selection is influenced by splice site strength and proximity; however, our in vivo results demonstrate a number of discrepancies with such a model and suggest that splice site selection may be coupled to transcription or a higher-order nuclear structure.


1990 ◽  
Vol 10 (1) ◽  
pp. 84-94 ◽  
Author(s):  
B L Robberson ◽  
G J Cote ◽  
S M Berget

Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.


Sign in / Sign up

Export Citation Format

Share Document