The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain

1991 ◽  
Vol 11 (2) ◽  
pp. 611-619
Author(s):  
J T Olesen ◽  
J D Fikes ◽  
L Guarente

The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.

1991 ◽  
Vol 11 (2) ◽  
pp. 611-619 ◽  
Author(s):  
J T Olesen ◽  
J D Fikes ◽  
L Guarente

The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.


1990 ◽  
Vol 10 (12) ◽  
pp. 6103-6113 ◽  
Author(s):  
H E Smith ◽  
S S Su ◽  
L Neigeborn ◽  
S E Driscoll ◽  
A P Mitchell

Two signals are required for meiosis and spore formation in the yeast Saccharomyces cerevisiae: starvation and the MAT products a1 and alpha 2, which determine the a/alpha cell type. These signals lead to increased expression of the IME1 (inducer of meiosis) gene, which is required for sporulation and sporulation-specific gene expression. We report here the sequence of the IME1 gene and the consequences of IME1 expression from the GAL1 promoter. The deduced IME1 product is a 360-amino-acid protein with a tyrosine-rich C-terminal region. Expression of PGAL1-IME1 in vegetative a/alpha cells led to moderate accumulation of four early sporulation-specific transcripts (IME2, SPO11, SPO13, and HOP1); the transcripts accumulated 3- to 10-fold more after starvation. Two sporulation-specific transcripts normally expressed later (SPS1 and SPS2) did not accumulate until PGAL1-IME1 strains were starved, and the intact IME1 gene was not activated by PGAL1-IME1 expression. In a or alpha cells, which lack alpha 2 or a1, expression of PGAL1-IME1 led to the same pattern of IME2 and SPO13 expression as in a/alpha cells, as measured with ime2::lacZ and spo13::lacZ fusions. Thus, in wild-type strains, the increased expression of IME1 in starved a/alpha cells can account entirely for cell type control, but only partially for nutritional control, of early sporulation-specific gene expression. PGAL1-IME1 expression did not cause growing cells to sporulate but permitted efficient sporulation of amino acid-limited cells, which otherwise sporulated poorly. We suggest that IME1 acts primarily as a positive regulator of early sporulation-specific genes and that growth arrest is an independent prerequisite for execution of the sporulation program.


1999 ◽  
Vol 354 (1389) ◽  
pp. 1577-1581 ◽  
Author(s):  
Y. Ohsumi

Bulk degradation of cytosol and organelles is important for cellular homeostasis under nutrient limitation, cell differentiation and development. This process occurs in a lytic compartment, and autophagy is the major route to the lysosome and/or vacuole. We found that yeast, Saccharomyces cerevisiae , induces autophagy under various starvation conditions. The whole process is essentially the same as macroautophagy in higher eukaryotic cells. However, little is known about the mechanism of autophagy at a molecular level. To elucidate the molecules involved, a genetic approach was carried out and a total of 16 autophagy–defective mutants ( apg ) were isolated. So far, 14 APG genes have been cloned. Among them we recently found a unique protein conjugation system essential for autophagy. The C–terminal glycine residue of a novel modifier protein Apg12p, a 186–amino–acid protein, is conjugated to a lysine residue of Apg5p, a 294–amino–acid protein, via an isopeptide bond. We also found that apg7 and apg10 mutants were unable to form an Apg12p–Apg5p conjugate. The conjugation reaction is mediated via Apg7p, E1–like activating enzyme and Apg10p, indicating that it is a ubiquitination–like system. These APG genes have mammalian homologues, suggesting that the Apg12 system is conserved from yeast to human. Further molecular and cell biological analyses of APG gene products will give us crucial clues to uncover the mechanism and regulation of autophagy.


1997 ◽  
Vol 17 (12) ◽  
pp. 7008-7018 ◽  
Author(s):  
D S McNabb ◽  
K A Tseng ◽  
L Guarente

The CCAAT-binding factor is an evolutionarily conserved heteromeric transcription factor that binds to CCAAT box-containing upstream activation sites within the promoters of numerous eukaryotic genes. The CCAAT-binding factor from Saccharomyces cerevisiae is a heterotetramer that contains the subunits Hap2p, Hap3p, Hap4p, and Hap5p and that functions in the activation of genes involved in respiratory metabolism. Here we describe the isolation of the cDNA encoding the Schizosaccharomyces pombe homolog of Hap5p, designated php5+. We have shown that Php5p is a subunit of the CCAAT-binding factor in fission yeast and is required for transcription of the S. pombe cyc1+ gene. Analysis of the evolutionarily conserved regions of Hap5p, Php5p, and the mammalian homolog CBF-C revealed two essential domains within Hap5p that are required for DNA binding and transcriptional activation. One is an 87-amino-acid core domain that is conserved among Hap5p, Php5p, and CBF-C and that is required for the assembly of the Hap2p-Hap3p-Hap5p heterotrimer both in vitro and in vivo. A second domain that is essential for the recruitment of Hap4p into the CCAAT-binding complex was identified in Hap5p and Php5p.


1985 ◽  
Vol 5 (11) ◽  
pp. 3261-3269 ◽  
Author(s):  
J Choe ◽  
T Schuster ◽  
M Grunstein

The histone H2A and H2B genes of the fission yeast Schizosaccharomyces pombe were cloned and sequenced. Southern blot and sequence analyses showed that, unlike other eucaryotes, Saccharomyces cerevisiae included, S. pombe has unequal numbers of these genes, containing two histone H2A genes (H2A-alpha and -beta) and only one H2B gene (H2B-alpha) per haploid genome. H2A- and H2B-alpha are adjacent to each other and are divergently transcribed. H2A-beta has no other histone gene in close proximity. Preceding both H2A-alpha and -beta is a highly conserved 19-base-pair sequence (5'-CATCAC/AAACCCTAACCCTG-3'). The H2A DNA sequences encode two histone H2A subtypes differing in amino acid sequence (three residues) and size (H2A-alpha, 131 residues; H2A-beta, 130 residues). H2B-alpha codes for a 125-amino-acid protein. Sequence evolution is extensive between S. pombe and S. cerevisiae and displays unique patterns of divergence. Certain N-terminal sequences normally divergent between eucaryotes are conserved between the two yeasts. In contrast, the normally conserved hydrophobic core of H2A is as divergent between the yeasts as between S. pombe and calf.


2009 ◽  
Vol 75 (9) ◽  
pp. 2765-2774 ◽  
Author(s):  
Esben H. Hansen ◽  
Birger Lindberg Møller ◽  
Gertrud R. Kock ◽  
Camilla M. Bünner ◽  
Charlotte Kristensen ◽  
...  

ABSTRACT Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.


1985 ◽  
Vol 5 (11) ◽  
pp. 3261-3269
Author(s):  
J Choe ◽  
T Schuster ◽  
M Grunstein

The histone H2A and H2B genes of the fission yeast Schizosaccharomyces pombe were cloned and sequenced. Southern blot and sequence analyses showed that, unlike other eucaryotes, Saccharomyces cerevisiae included, S. pombe has unequal numbers of these genes, containing two histone H2A genes (H2A-alpha and -beta) and only one H2B gene (H2B-alpha) per haploid genome. H2A- and H2B-alpha are adjacent to each other and are divergently transcribed. H2A-beta has no other histone gene in close proximity. Preceding both H2A-alpha and -beta is a highly conserved 19-base-pair sequence (5'-CATCAC/AAACCCTAACCCTG-3'). The H2A DNA sequences encode two histone H2A subtypes differing in amino acid sequence (three residues) and size (H2A-alpha, 131 residues; H2A-beta, 130 residues). H2B-alpha codes for a 125-amino-acid protein. Sequence evolution is extensive between S. pombe and S. cerevisiae and displays unique patterns of divergence. Certain N-terminal sequences normally divergent between eucaryotes are conserved between the two yeasts. In contrast, the normally conserved hydrophobic core of H2A is as divergent between the yeasts as between S. pombe and calf.


1994 ◽  
Vol 297 (3) ◽  
pp. 603-608 ◽  
Author(s):  
J Nairn ◽  
N C Price ◽  
L A Fothergill-Gilmore ◽  
G E Walker ◽  
J E Fothergill ◽  
...  

The amino acid sequence of the monomeric 2,3-bisphosphoglycerate (BPG)-dependent phosphoglycerate mutase (PGAM) from the fission yeast Schizosaccharomyces pombe has been determined. Amino acid sequencing of proteolytic fragments of the enzyme showed the S. pombe mutase to be similar in sequence to the tetrameric enzyme of baker's yeast (Saccharomyces cerevisiae). An S. pombe cDNA library was screened using a PCR fragment generated from two oligonucleotides complementary to sequences encoding the regions at the two active-site histidine residues. The 0.63 kb cDNA encoded an open reading frame of 210 amino acids. This sequence agreed completely with sequences of peptides derived from the purified protein. The amino acid sequence of S. pombe PGAM is 43% identical with that of S. cerevisiae PGAM and shows an equally high degree of identity with BPG-dependent PGAMs from other sources. However, the sequence of the S. pombe enzyme differs from other BPG-dependent enzymes in three important ways: (i) it does not contain the alanine- and lysine-rich sequence of amino acids at the C-terminus which have been proposed to constitute a flexible tail involved in catalysis; (ii) the sequence spanning residues 122-146 (S. cerevisiae PGAM numbering) is not present in the S. pombe PGAM sequence; in the S. cerevisiae PGAM crystal structure this stretch of sequence has been shown to occur as an extended loop, part of which is involved in inter-subunit interactions; (iii) the amino acid sequence in the region of a second S. cerevisiae inter-subunit contact (residues 74-78) shows radical mutations in the S. pombe enzyme.


Sign in / Sign up

Export Citation Format

Share Document