TFEC, a basic helix-loop-helix protein, forms heterodimers with TFE3 and inhibits TFE3-dependent transcription activation

1993 ◽  
Vol 13 (8) ◽  
pp. 4505-4512
Author(s):  
G Q Zhao ◽  
Q Zhao ◽  
X Zhou ◽  
M G Mattei ◽  
B de Crombrugghe

We have identified a new basic helix-loop-helix (BHLH) DNA-binding protein, designated TFEC, which is closely related to TFE3 and TFEB. The basic domain of TFEC is identical to the basic DNA-binding domain of TFE3 and TFEB, whereas the helix-loop-helix motif of TFEC shows 88 and 85% identity with the same domains in TFE3 and TFEB, respectively. Like the other two proteins, TFEC contains a leucine zipper motif, which has a lower degree of sequence identity with homologous domains in TFE3 and TFEB than does the BHLH segment. Little sequence identity exists outside these motifs. Unlike the two other proteins, TFEC does not contain an acidic domain, which for TFE3 mediates the ability to activate transcription. Like the in vitro translation product of TFE3, the in vitro-translated TFEC binds to the mu E3 DNA sequence of the immunoglobulin heavy-chain gene enhancer. In addition, the product of cotranslation of TFEC RNA and TFE3 RNA forms a heteromeric protein-DNA complex with mu E3 DNA. In contrast to TFE3, TFEC is unable to transactivate a reporter gene linked to a promoter containing tandem copies of the immunoglobulin mu E3 enhancer motif. Cotransfection of TFEC DNA and TFE3 DNA strongly inhibits the transactivation caused by TFE3. TFEC RNA is found in many tissues of adult rats, but the relative concentrations of TFEC and TFE3 RNAs vary considerably in these different tissues. No TFEC RNA was detectable in several cell lines, including fibroblasts, myoblasts, chondrosarcoma cells, and myeloma cells, indicating that TFEC is not ubiquitously expressed.

1993 ◽  
Vol 13 (8) ◽  
pp. 4505-4512 ◽  
Author(s):  
G Q Zhao ◽  
Q Zhao ◽  
X Zhou ◽  
M G Mattei ◽  
B de Crombrugghe

We have identified a new basic helix-loop-helix (BHLH) DNA-binding protein, designated TFEC, which is closely related to TFE3 and TFEB. The basic domain of TFEC is identical to the basic DNA-binding domain of TFE3 and TFEB, whereas the helix-loop-helix motif of TFEC shows 88 and 85% identity with the same domains in TFE3 and TFEB, respectively. Like the other two proteins, TFEC contains a leucine zipper motif, which has a lower degree of sequence identity with homologous domains in TFE3 and TFEB than does the BHLH segment. Little sequence identity exists outside these motifs. Unlike the two other proteins, TFEC does not contain an acidic domain, which for TFE3 mediates the ability to activate transcription. Like the in vitro translation product of TFE3, the in vitro-translated TFEC binds to the mu E3 DNA sequence of the immunoglobulin heavy-chain gene enhancer. In addition, the product of cotranslation of TFEC RNA and TFE3 RNA forms a heteromeric protein-DNA complex with mu E3 DNA. In contrast to TFE3, TFEC is unable to transactivate a reporter gene linked to a promoter containing tandem copies of the immunoglobulin mu E3 enhancer motif. Cotransfection of TFEC DNA and TFE3 DNA strongly inhibits the transactivation caused by TFE3. TFEC RNA is found in many tissues of adult rats, but the relative concentrations of TFEC and TFE3 RNAs vary considerably in these different tissues. No TFEC RNA was detectable in several cell lines, including fibroblasts, myoblasts, chondrosarcoma cells, and myeloma cells, indicating that TFEC is not ubiquitously expressed.


1999 ◽  
Vol 19 (4) ◽  
pp. 2946-2957 ◽  
Author(s):  
Gang Tian ◽  
Batu Erman ◽  
Haruhiko Ishii ◽  
Samudra S. Gangopadhyay ◽  
Ranjan Sen

ABSTRACT The immunoglobulin μ heavy-chain gene enhancer contains closely juxtaposed binding sites for ETS and leucine zipper-containing basic helix-loop-helix (bHLH-zip) proteins. To understand the μ enhancer function, we have investigated transcription activation by the combination of ETS and bHLH-zip proteins. The bHLH-zip protein TFE3, but not USF, cooperated with the ETS domain proteins PU.1 and Ets-1 to activate a tripartite domain of this enhancer. Deletion mutants were used to identify the domains of the proteins involved. Both TFE3 and USF enhanced Ets-1 DNA binding in vitro by relieving the influence of an autoinhibitory domain in Ets-1 by direct protein-protein associations. Several regions of Ets-1 were found to be necessary, whereas the bHLH-zip domain was sufficient for this effect. Our studies define novel interactions between ETS and bHLH-zip proteins that may regulate combinatorial transcription activation by these protein families.


1992 ◽  
Vol 12 (2) ◽  
pp. 817-827 ◽  
Author(s):  
C Roman ◽  
A G Matera ◽  
C Cooper ◽  
S Artandi ◽  
S Blain ◽  
...  

Southwestern (DNA-protein) screening of a murine L-cell cDNA library by using a probe for the microE3 site in the immunoglobulin heavy-chain enhancer yielded a clone, mTFE3, which is a member of the subset of basic helix-loop-helix (BHLH) proteins that also contain a leucine zipper (ZIP). Since the individual contribution of these domains is not well understood for proteins which contain them both, mutational analyses were performed to assess the functional roles of the HLH and ZIP regions for DNA binding and multimerization. The HLH region is stringently required for DNA binding but not for multimerization. The ZIP region is not stringently required for binding or multimerization, but stabilizes both multimer formation and DNA binding. A high degree of conservation at both the amino acid and nucleotide levels between the human transcription factor TFE3 and mTFE3 suggests that mTFE3 is the murine homolog of human TFE3. By using fluorescent in situ hybridization, mTFE3 was mapped to mouse chromosome X in band A2, which is just below the centromere. We show that in addition to the immunoglobulin heavy-chain microE3 site, mTFE3 binds to transcriptional elements important for lymphoid-specific, muscle-specific, and ubiquitously expressed genes. Binding of mTFE3 to DNA induces DNA bending.


1997 ◽  
Vol 17 (7) ◽  
pp. 3527-3535 ◽  
Author(s):  
B S Nikolajczyk ◽  
M Cortes ◽  
R Feinman ◽  
R Sen

A tripartite domain of the immunoglobulin mu heavy-chain gene enhancer that activates transcription in B cells contains binding sites for PU.1, Ets-1, and a leucine zipper-containing basic helix-loop-helix factor. Because PU.1 is expressed only in B cells and macrophages, we tested the activity of a minimal mu enhancer fragment in macrophages by transient transfections. The minimal mu enhancer activated transcription in macrophages, and the activity was dependent on all three sites. Analysis of mutated enhancers, in which spacing and orientation of the ETS protein binding sites had been changed, suggested that the mechanisms of enhancer activation were different in B cells and macrophages. Thus, ETS protein binding sites may be combined in different ways to generate tissue-specific transcription activators. Despite the activity of the minimal enhancer in macrophages, a larger mu enhancer fragment was inactive in these cells. We propose that formation of the nucleoprotein complex that is formed on the minimal enhancer in macrophages cannot be helped by the neighboring muE elements that are essential for activity of the monomeric enhancer.


1996 ◽  
Vol 16 (12) ◽  
pp. 6900-6908 ◽  
Author(s):  
S R Sloan ◽  
C P Shen ◽  
R McCarrick-Walmsley ◽  
T Kadesch

The E2A gene encodes two basic helix-loop-helix proteins designated E12 and E47. Although these proteins are widely expressed, they are required only for the B-lymphocyte lineage where DNA binding is mediated distinctively by E47 homodimers. By studying the properties of deltaE47, an N-terminal truncation of E47, we provide evidence that phosphorylation may contribute to B-cell-specific DNA binding by E47. Two serines N terminal to the deltaE47 basic helix-loop-helix domain were found to be phosphorylated in a variety of cell types but were hypophosphorylated in B cells. Phosphorylating these serines in vitro inhibited DNA binding by deltaE47 homodimers but not by deltaE47-containing heterodimers, such as deltaE47:MyoD. These results argue that hypophosphorylation may be a prerequisite for activity of E47 homodimers in B cells, suggesting the use of an inductive (nonstochastic) step in early B-cell development.


1998 ◽  
Vol 18 (3) ◽  
pp. 1477-1488 ◽  
Author(s):  
Wei Dang ◽  
Xiao-hong Sun ◽  
Ranjan Sen

ABSTRACT The μE motifs of the immunoglobulin μ heavy-chain gene enhancer bind ubiquitously expressed proteins of the basic helix-loop-helix (bHLH) family. These elements work together with other, more tissue-restricted elements to produce B-cell-specific enhancer activity by presently undefined combinatorial mechanisms. We found that μE2 contributed to transcription activation in B cells only when the μE3 site was intact, providing the first evidence for functional interactions between bHLH proteins. In vitro assays showed that bHLH zipper proteins binding to μE3 enhanced Ets-1 binding to μA. One of the consequences of this protein-protein interaction was to facilitate binding of a second bHLH protein, E47, to the μE2 site, thereby generating a three-protein–DNA complex. Furthermore, transcriptional synergy between bHLH and bHLH zipper factors also required an intermediate ETS protein, which may bridge the transcription activation domains of the bHLH factors. Our observations define an unusual form of cooperation between bHLH and ETS proteins and suggest mechanisms by which tissue-restricted and ubiquitous factors combine to generate tissue-specific enhancer activity.


2007 ◽  
Vol 403 (3) ◽  
pp. 493-499 ◽  
Author(s):  
Yutaka Kodama ◽  
Hiroshi Sano

A plastid-resident basic helix–loop–helix protein, previously identified in Nicotiana tabacum and designated as NtWIN4 (N. tabacum wound-induced clone 4), has been converted from a nuclear transcription repressor into a plastid-resident regulatory factor through replacement of the DNA-binding domain with a plastid transit sequence during evolution. N. tabacum is a natural amphidiploid plant derived from Nicotiana tomentosiformis and Nicotiana sylvestris and immunoblot staining using anti-NtWIN4 antibodies identified two protein species, a 26 kDa form and a 17 kDa form, in N. sylvestris, whereas only the 17 kDa form was found in N. tabacum. The 26 kDa protein is produced when translation starts from the first AUG codon of the mRNA and is predominantly localized in the cytoplasm and nucleus, whereas the 17 kDa protein is derived from a 24 kDa precursor protein, synthesized from the second AUG codon, and localizes only to plastids. Subsequent analyses revealed that the lengths of the mRNAs vary in the two plant species. One major form lacks the first AUG, while minor populations possess variable 5′-untranslated regions prior to the first AUG codon. Translation of the two types produces the 24 kDa and 26 kDa proteins respectively. In vitro translation assays indicated that initiation frequency from the first AUG codon is higher in mRNAs from N. sylvestris than from N. tabacum. In contrast, initiation from the second AUG codon was found to be equally efficient in mRNAs from both species. These results suggest that both mRNA populations and translation efficiency changed during the amphidiploidization responsible for generation of N. tabacum. This scheme could reflect a molecular mechanism of protein evolution in plants.


1996 ◽  
Vol 16 (7) ◽  
pp. 3893-3900 ◽  
Author(s):  
J Huang ◽  
T K Blackwell ◽  
L Kedes ◽  
H Weintraub

A method has been developed for selecting functional enhancer/promoter sites from random DNA sequences in higher eukaryotic cells. Of sequences that were thus selected for transcriptional activation by the muscle-specific basic helix-loop-helix protein MyoD, only a subset are similar to the preferred in vitro binding consensus, and in the same promoter context an optimal in vitro binding site was inactive. Other sequences with full transcriptional activity instead exhibit sequence preferences that, remarkably, are generally either identical or very similar to those found in naturally occurring muscle-specific promoters. This first systematic examination of the relation between DNA binding and transcriptional activation by basic helix-loop-helix proteins indicates that binding per se is necessary but not sufficient for transcriptional activation by MyoD and implies a requirement for other DNA sequence-dependent interactions or conformations at its binding site.


1992 ◽  
Vol 12 (11) ◽  
pp. 5094-5101
Author(s):  
B J Kirschbaum ◽  
P Pognonec ◽  
R G Roeder

The cellular transcription factor USF is involved in the regulation of both cellular and viral genes and consists of 43- and 44-kDa polypeptides which independently show site-specific DNA binding. Cloning of the corresponding cDNA revealed that the 43-kDa polypeptide (USF43) is a member of the basic (B)-helix-loop-helix (HLH)-leucine zipper (LZ) family of proteins and provided a means for its functional dissection. Initial structure-function studies revealed that the HLH and LZ regions are both important for USF43 oligomerization and DNA binding. The studies presented here have focused on the determination of domains that contribute to transcriptional activation in vitro and show that (i) both a small region close to the N terminus and a region between residues 93 and 156 contribute strongly to transcriptional activation, (ii) full activation depends on the presence of both domains, (iii) the B-HLH-LZ region has no intrinsic activation potential but DNA binding is absolutely required for transcriptional activation, and (iv) the B-HLH-LZ region can be replaced by the Gal4 DNA binding domain without loss of activation potential.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 99-112 ◽  
Author(s):  
M. Capovilla ◽  
E.D. Eldon ◽  
V. Pirrotta

The sequence of a cDNA from the giant gene of Drosophila shows that its product has a basic domain followed by a leucine zipper motif. Both features contain characteristic conserved elements of the b-ZIP family of DNA-binding proteins. Expression of the gene in bacteria or by in vitro translation yields a protein that migrates considerably faster than the protein extracted from Drosophila embryos. Treatment with phosphatase shows that this difference is due to multiple phosphorylation of the giant protein in the embryo. Ectopic expression of the protein in precellular blastoderm embryos produces abnormal phenotypes with a pattern of segment loss closely resembling that of Kruppel mutant embryos. Immunological staining shows that giant, ectopically expressed from the hsp70 promoter, represses the expression of both the Kruppel and knirps segmentation gap genes. The analysis of the interactions between Kruppel, knirps and giant reveals a network of negative regulation. We show that the apparent positive regulation of knirps by Kruppel is in fact mediated by a negative effect of Kruppel on giant and a negative effect of giant on knirps. giant protein made in bacteria or in embryos binds in vitro to the Kruppel regulatory elements CD1 and CD2 and recognizes a sequence resembling the binding sites of other b-ZIP proteins.


Sign in / Sign up

Export Citation Format

Share Document