scholarly journals c-Myc or Cyclin D1 Mimics Estrogen Effects on Cyclin E-Cdk2 Activation and Cell Cycle Reentry

1998 ◽  
Vol 18 (8) ◽  
pp. 4499-4508 ◽  
Author(s):  
Owen W. J. Prall ◽  
Eileen M. Rogan ◽  
Elizabeth A. Musgrove ◽  
Colin K. W. Watts ◽  
Robert L. Sutherland

ABSTRACT Estrogen-induced progression through G1 phase of the cell cycle is preceded by increased expression of the G1-phase regulatory proteins c-Myc and cyclin D1. To investigate the potential contribution of these proteins to estrogen action, we derived clonal MCF-7 breast cancer cell lines in which c-Myc or cyclin D1 was expressed under the control of the metal-inducible metallothionein promoter. Inducible expression of either c-Myc or cyclin D1 was sufficient for S-phase entry in cells previously arrested in G1 phase by pretreatment with ICI 182780, a potent estrogen antagonist. c-Myc expression was not accompanied by increased cyclin D1 expression or Cdk4 activation, nor was cyclin D1 induction accompanied by increases in c-Myc. Expression of c-Myc or cyclin D1 was sufficient to activate cyclin E-Cdk2 by promoting the formation of high-molecular-weight complexes lacking the cyclin-dependent kinase inhibitor p21, as has been described, following estrogen treatment. Interestingly, this was accompanied by an association between active cyclin E-Cdk2 complexes and hyperphosphorylated p130, identifying a previously undefined role for p130 in estrogen action. These data provide evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on or prior to the formation of active cyclin E-Cdk2-p130 complexes and loss of inactive cyclin E-Cdk2-p21 complexes, indicating a physiologically relevant role for the cyclin E binding motifs shared by p130 and p21.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xi-Yong Yu ◽  
Yong-Jian Geng ◽  
Xiao-Hong Li ◽  
Chun-Yu Deng ◽  
Shu-Guang Lin ◽  
...  

Mesenchymal stem cells (MSCs) contribute myocardial regeneration, and the beneficial effects may be mediated by paracrine factors produced by MSCs. C-kit positive neonatal cardiomyocytes (NCMs) contribute to myocardial regeneration, but they do not give a robust regenerative response since low expression of c-kit. Cell-cycle reentry of NCMs and insulin-like growth factor (IGF-1) improve myocardial function in infarcted hearts. MSCs and NCMs were prepared from Lewis rats, and cocultured in two chambers which allowed the diffusion of secreted factors from upper chamber to lower chamber, but prevented cell contacts. MSCs secreted significant amount of IGF-1 (159.6 ± 34.4 pg/ug DNA at 24 h, 285.3 ± 28.5 pg/ug DNA at 48 h, and 358.3 ± 39.9 pg/ug DNA at 72 h), whereas the amount of IGF-1 in conditioned medium from NCMs was undetectable assessed by IGF-1 ELISA. Using flow cytometry, we found that the secreted factors by MSCs increased c-kit protein expression, which was attenuated by IGF-1 receptor neutralizing antibody (IGF-1R Ab) and phosphatidylinositol 3 (PI3) kinase inhibitor LY 294002 (NCM vs MSC/NCM vs MSC/NCM+IGF-1R Ab vs MSC/NCM+ LY294002= 1.5 ± 0.6 % vs 5.5 ± 0.3 % vs 1.9 ± 0.6% vs 2.1 ± 0.5%) assessed by flow cytometry. The cytokinesis of NCMs was increased when cocultured with MSC analyzed by calcein fluorescence intensity (3.1 ± 0.5 fold increase, p<0.02). As determined by BrdU assay, the DNA synthesis of NCMs was significantly increased when cocultured with MSC compared to NCM alone (1.8 ± 0.3 fold increase at 48 h, 2.6 ± 0.2 fold increae at 72 h), which was attenuated by IGF-1R Ab and by PI3 kinase inhibitor. To confirm the paracrine effects of MSCs are mediated by IGF-1 signaling and PI3/Akt pathway, we performed in vitro Akt kinase assay using GSK-3 fusion protein as substrate, and found that co-culture system increased the activity of Akt kinase in NCMs, and the IGF-1R Ab and PI3 kinase inhibitor dose-dependent blocked the ability of co-culture system to increase Akt kinase activity. Our results demonstrate that the paracrine effects of MSC on c-kit up-regulation and cell-cycle reentry of NCM are mediated by IGF-1R activation through PI3 kinase/Akt - mediated pathway. These findings provide a new paradigm for the biological effects of IGF-1 on myocardial regeneration. This research has received full or partial funding support from the American Heart Association, AHA South Central Affiliate (Arkansas, New Mexico, Oklahoma & Texas).


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 765-772 ◽  
Author(s):  
Margarita Sánchez-Beato ◽  
Francisca I. Camacho ◽  
Juan C. Martı́nez-Montero ◽  
Ana I. Sáez ◽  
Raquel Villuendas ◽  
...  

Abstract p27 cyclin-dependent kinase inhibitor downregulation is essential for transition to the S phase of the cell cycle. Thus, proliferating cells in reactive lymphoid tissue show no detectable p27 expression. Nevertheless, anomalous high p27 expression has been shown to be present in a group of aggressive B-cell lymphomas with high proliferation index and adverse clinical outcome. This suggests that abnormally accumulated p27 protein has been rendered functionally inactive. We analyzed the causes of this anomalous presence of p27 in a group of aggressive B-cell lymphomas, including 54 cases of diffuse large B-cell lymphomas and 20 Burkitt’s lymphomas. We simultaneously studied them for p27, cyclin D3, cyclin D2, cyclin D1, and cyclin E expression, because it has been stated that high levels of expression of cyclin D1 or E lead to increased p27 levels in some cell types. A statistically significant association between p27 and cyclin D3 expression was found for the group as a whole. Additionally, when dividing the cases according to the level of expression of cyclin D3 by reactive germinal centers, it was observed that cases with stronger cyclin D3 expression also show higher p27 expression. The relationship between both proteins was also shown at a subcellular level by laser confocal studies, showing that in cases with high expression of both proteins there was a marked colocalization. Additional evidence in favor of p27 sequestration by cyclin D3 was provided by coimmunoprecipitation studies in a Burkitt’s cell line (Raji) showing the existence of cyclin D3/p27 complexes and the absence of CDK2/p27 complexes. These results could support the hypothesis that there are cyclin D3/p27 complexes in a subset of aggressive B-cell lymphomas in which p27 lacks the inhibitory activity found when it is bound to cyclin E/CDK2 complexes. This interaction between both proteins could lead to an abnormal nuclear accumulation, detectable by immunohistochemical techniques.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 765-772 ◽  
Author(s):  
Margarita Sánchez-Beato ◽  
Francisca I. Camacho ◽  
Juan C. Martı́nez-Montero ◽  
Ana I. Sáez ◽  
Raquel Villuendas ◽  
...  

p27 cyclin-dependent kinase inhibitor downregulation is essential for transition to the S phase of the cell cycle. Thus, proliferating cells in reactive lymphoid tissue show no detectable p27 expression. Nevertheless, anomalous high p27 expression has been shown to be present in a group of aggressive B-cell lymphomas with high proliferation index and adverse clinical outcome. This suggests that abnormally accumulated p27 protein has been rendered functionally inactive. We analyzed the causes of this anomalous presence of p27 in a group of aggressive B-cell lymphomas, including 54 cases of diffuse large B-cell lymphomas and 20 Burkitt’s lymphomas. We simultaneously studied them for p27, cyclin D3, cyclin D2, cyclin D1, and cyclin E expression, because it has been stated that high levels of expression of cyclin D1 or E lead to increased p27 levels in some cell types. A statistically significant association between p27 and cyclin D3 expression was found for the group as a whole. Additionally, when dividing the cases according to the level of expression of cyclin D3 by reactive germinal centers, it was observed that cases with stronger cyclin D3 expression also show higher p27 expression. The relationship between both proteins was also shown at a subcellular level by laser confocal studies, showing that in cases with high expression of both proteins there was a marked colocalization. Additional evidence in favor of p27 sequestration by cyclin D3 was provided by coimmunoprecipitation studies in a Burkitt’s cell line (Raji) showing the existence of cyclin D3/p27 complexes and the absence of CDK2/p27 complexes. These results could support the hypothesis that there are cyclin D3/p27 complexes in a subset of aggressive B-cell lymphomas in which p27 lacks the inhibitory activity found when it is bound to cyclin E/CDK2 complexes. This interaction between both proteins could lead to an abnormal nuclear accumulation, detectable by immunohistochemical techniques.


1999 ◽  
Vol 19 (3) ◽  
pp. 2109-2117 ◽  
Author(s):  
Gretchen H. Stein ◽  
Linda F. Drullinger ◽  
Alexandre Soulard ◽  
Vjekoslav Dulić

ABSTRACT The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1cyclin–cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21Sdi1,Cip1,Waf1, which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16Ink4a, suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by ≤50% compared to young cells. We also provide new evidence that p21 may play a role in inactivation of the DNA replication factor proliferating cell nuclear antigen during early senescence. Finally, because p16 accumulates in parallel with the increases in senescence-associated β-Gal activity and cell volume that characterize the senescent phenotype, we suggest that p16 upregulation may be part of a differentiation program that is turned on in senescent cells. Since p21 decreases after senescence is achieved, this upregulation of p16 may be essential for maintenance of the senescent-cell-cycle arrest.


2001 ◽  
Vol 21 (3) ◽  
pp. 794-810 ◽  
Author(s):  
James S. Foster ◽  
Donald C. Henley ◽  
Antonin Bukovsky ◽  
Prem Seth ◽  
Jay Wimalasena

ABSTRACT Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G1/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16INK4a to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16INK4a inhibited G1/S transition induced in MCF-7 cells by 17-β-estradiol (E2) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G1 and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21Cip1 and p27Kip1 was decreased, however, in both control and p16INK4a-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E2 in control and p16INK4a-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16INK4a. Inhibition of Cdc25A activity in p16INK4a-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E2-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisenseCDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16INK4a-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21Cip1 and p27Kip1.


2012 ◽  
Vol 23 (18) ◽  
pp. 3722-3730 ◽  
Author(s):  
Prashant Kumar Modi ◽  
Narayana Komaravelli ◽  
Neha Singh ◽  
Pushkar Sharma

In response to neurotoxic signals, postmitotic neurons make attempts to reenter the cell cycle, which results in their death. Although several cell cycle proteins have been implicated in cell cycle–related neuronal apoptosis (CRNA), the molecular mechanisms that underlie this important event are poorly understood. Here, we demonstrate that neurotoxic agents such as β-amyloid peptide cause aberrant activation of mitogen-activated kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) signaling, which promotes the entry of neurons into the cell cycle, resulting in their apoptosis. The MEK-ERK pathway regulates CRNA by elevating the levels of cyclin D1. The increase in cyclin D1 attenuates the activation of cyclin-dependent kinase 5 (cdk5) by its neuronal activator p35. The inhibition of p35-cdk5 activity results in enhanced MEK-ERK signaling, leading to CRNA. These studies highlight how neurotoxic signals reprogram and alter the neuronal signaling machinery to promote their entry into the cell cycle, which eventually leads to neuronal cell death.


2018 ◽  
Author(s):  
Chaska C Walton ◽  
Wei Zhang ◽  
Iris Patiño-Parrado ◽  
Estíbaliz Barrio-Alonso ◽  
Juan-José Garrido ◽  
...  

SUMMARYMitotic activity associated to neuron cell-death instead of cell-division is reported in neurodegenerative diseases. However, why mitotic activity can take place in supposedly postmitotic neurons and how it is associated to cell-death remains largely unexplained. To address these questions, we have studied the response of primary neurons to oncogenic deregulation using a fusion protein based on truncated Cyclin E and Cdk2. Oncogenic Cyclin E/Cdk2 elicits mitotic checkpoint signaling, resulting in cell-cycle arrest and cell-death. However, as in mitotic cells, checkpoint suppression enables oncogenic cell-cycle progression and neuronal division. Further, neurons actively adapt to the cell-cycle by losing and reforming the axon initial segment, which integrates synaptic inputs to sustain action potentials. We conclude that neurons are mitotic cells in a reversible quiescent-like state, which is falsely portrayed as irreversible by mitotic checkpoints. In extension, neuronal death in lieu of cell-division reflects oncosuppressive checkpoint signaling.


2001 ◽  
Vol 280 (5) ◽  
pp. F851-F859 ◽  
Author(s):  
Satoko Hanada ◽  
Yoshio Terada ◽  
Seiji Inoshita ◽  
Sei Sasaki ◽  
Suzanne M. Lohmann ◽  
...  

The cGMP-cGMP-dependent protein kinase (protein kinase G) system plays an important role in the pathogenesis of mesangial proliferative glomerulonephritis. However, the molecular mechanisms of the inhibitory effects of the cGMP-protein kinase G system in the cell cycle progression of mesangial cells are not well known. To determine the inhibitory pathway of cGMP-protein kinase G in cultured mesangial cells, we investigated the effects of cGMP- and adenovirus-mediated overexpression of protein kinase G on the promoter activities of cyclin E, cyclin D1, and cyclin A. 8-Bromo-cGMP (8-BrcGMP) and overexpression of protein kinase G reduced [3H]thymidine uptake, reduced the numbers of cells in S and G2/M phases, and decreased the phosphorylation of retinoblastoma (Rb) protein. 8-BrcGMP (10−3 M), protein kinase G adenovirus (Ad-cGKIβ; 1010 plaque-forming units/ml), atrial natriuretic peptide (ANP), and C-type natriuretic peptide (CNP) inhibited the promoter activity of cyclin E to 49, 57, 77, and 78%, respectively. On the other hand, the promoter activities of cyclin D1 and cyclin A were not changed significantly. In Western blot analysis, 8-BrcGMP, Ad-cGKIβ, ANP, and CNP also inhibited cyclin E protein expression dose and time dependently. The p44/p42 mitogen-activated protein kinase (MAPK) kinase 1-p44/p42 MAPK had no effect on cyclin E promoter activities, and the cGMP-protein kinase G pathway did not change MAPK activity. In conclusion, our findings suggest that the reduction of the cyclin E promoter activity that downregulates G1/S transition plays a dominant role in the cGMP- and protein kinase G-induced inhibition of mesangial cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document