scholarly journals Peroxisome Proliferator-Activated Receptor γ Target Gene Encoding a Novel Angiopoietin-Related Protein Associated with Adipose Differentiation

2000 ◽  
Vol 20 (14) ◽  
pp. 5343-5349 ◽  
Author(s):  
J. Cliff Yoon ◽  
Troy W. Chickering ◽  
Evan D. Rosen ◽  
Barry Dussault ◽  
Yubin Qin ◽  
...  

ABSTRACT The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis.

Endocrinology ◽  
2012 ◽  
Vol 154 (2) ◽  
pp. 698-708 ◽  
Author(s):  
Laura Mikkonen ◽  
Johanna Hirvonen ◽  
Olli A. Jänne

Properly functioning adipose tissue is essential for normal insulin sensitivity of the body. When mice are kept on high-fat diet (HFD), adipose tissue expands, adipocytes increase in size and number, and the mice become obese. Many of these changes are mediated by the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), the activity of which is regulated by multiple posttranslational modifications, including SUMOylation. To address the role of small ubiquitin-like modifier-1 (SUMO-1) in PPARγ function in vivo, particularly in fat cell biology, we subjected Sumo1-knockout mice to HFD. Sumo1-null mice gained less weight and had smaller and fewer adipocytes in their gonadal fat tissue on HFD, but their glucose tolerance was similar to that of wild-type littermates. Adipogenesis was impaired in Sumo1-null cells, and expression of PPARγ target genes was attenuated. In addition, both Sumo1-null cells and Sumo1-null mice responded less efficiently to rosiglitazone, a PPARγ agonist. These findings indicate that SUMO-1 is important also for transcriptional activation by the PPARγ signaling pathway and not only for trans-repressive functions of PPARγ as previously reported.


2021 ◽  
Vol 22 (4) ◽  
pp. 1854
Author(s):  
Tabinda Sidrat ◽  
Zia-Ur Rehman ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
Il-Keun Kong

The Wnt/β-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/β-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/β-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of β-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/β-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/β-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/β-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


2018 ◽  
Vol 475 (10) ◽  
pp. 1687-1699 ◽  
Author(s):  
Eunjin Koh ◽  
Young Kyung Kim ◽  
Daye Shin ◽  
Kyung-Sup Kim

Mitochondrial pyruvate carrier (MPC), which is essential for mitochondrial pyruvate usage, mediates the transport of cytosolic pyruvate into mitochondria. Low MPC expression is associated with various cancers, and functionally associated with glycolytic metabolism and stemness. However, the mechanism by which MPC expression is regulated is largely unknown. In this study, we showed that MPC1 is down-regulated in human renal cell carcinoma (RCC) due to strong suppression of peroxisome proliferator-activated receptor-gamma co-activator (PGC)-1 alpha (PGC-1α). We also demonstrated that overexpression of PGC-1α stimulates MPC1 transcription, while depletion of PGC-1α by siRNA suppresses MPC expression. We found that PGC-1α interacts with estrogen-related receptor-alpha (ERR-α) and recruits it to the ERR-α response element motif located in the proximal MPC1 promoter, resulting in efficient activation of MPC1 expression. Furthermore, the MPC inhibitor, UK5099, blocked PGC-1α-induced pyruvate-dependent mitochondrial oxygen consumption. Taken together, our results suggest that MPC1 is a novel target gene of PGC-1α. In addition, low expression of PGC-1α in human RCC might contribute to the reduced expression of MPC, resulting in impaired mitochondrial respiratory capacity in RCC by limiting the transport of pyruvate into the mitochondrial matrix.


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sean R. Pyper ◽  
Navin Viswakarma ◽  
Yuzhi Jia ◽  
Yi-Jun Zhu ◽  
Joseph D. Fondell ◽  
...  

The peroxisome proliferator-activated receptor- (PPAR) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPAR in rodents leads to the development of hepatocellular carcinomas. The ability of PPAR to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPAR-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPAR and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPAR, PPAR, and ER. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPAR and functions as a transcription coactivator underin vitroconditions and may play an important role in mediating the effectsin vivoas a member of the PRIC complex with Med1 and Med24.


2012 ◽  
Vol 32 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Chanjuan Hao ◽  
Xuejia Cheng ◽  
Hongfei Xia ◽  
Xu Ma

The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.


Endocrinology ◽  
2015 ◽  
Vol 156 (10) ◽  
pp. 3610-3624 ◽  
Author(s):  
Gabriele Schoiswohl ◽  
Maja Stefanovic-Racic ◽  
Marie N. Menke ◽  
Rachel C. Wills ◽  
Beth A. Surlow ◽  
...  

Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.


2007 ◽  
Vol 292 (3) ◽  
pp. H1443-H1451 ◽  
Author(s):  
Kenichi Sekiguchi ◽  
Qi Tian ◽  
Masakuni Ishiyama ◽  
Jana Burchfield ◽  
Feng Gao ◽  
...  

A shift in energy substrate utilization from fatty acids to glucose has been reported in failing hearts, resulting in improved oxygen efficiency yet perhaps also contributing to a state of energy deficiency. Peroxisome proliferator-activated receptor (PPAR)-α, the principal transcriptional regulator of cardiac fatty acid β-oxidation (FAO) genes, is downregulated in heart failure, and this may contribute to reduced fatty acid utilization. Cardiomyopathic states are also accompanied by elevated levels of circulating cytokines, such as tumor necrosis factor (TNF), as well as increased local production of cytokines and profibrotic factors, such as transforming growth factor (TGF)-β. However, whether these molecular pathways directly modulate cardiac energy metabolism and PPAR-α activity is not known. Therefore, FAO capacity and FAO gene expression were determined in mice with cardiac-restricted overexpression of TNF (MHCsTNF3). MHCsTNF3 hearts had significantly lower FAO capacity and decreased expression of PPAR-α and FAO target genes compared with control hearts. Surprisingly, TNF had little effect on PPAR-α activity and FAO rates in cultured ventricular myocytes, suggesting that TNF acts indirectly on myocyte FAO in vivo. We found that TGF-β expression was upregulated in MHCsTNF3 hearts and that treatment of cultured myocytes with TGF-β significantly suppressed FAO rates and directly impaired PPAR-α activity, a result reproduced by Smad3 overexpression. This work demonstrates that TGF-β signaling pathways directly suppress PPAR-α activity and reduce FAO in cardiac myocytes, perhaps in response to locally elevated TNF. Although speculative, TGF-β-driven repair mechanisms may also include the additional benefit of limiting FAO in injured myocardium.


2016 ◽  
Vol 36 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Nathan L. Price ◽  
Brandon Holtrup ◽  
Stephanie L. Kwei ◽  
Martin Wabitsch ◽  
Matthew Rodeheffer ◽  
...  

White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promotingin vitroadipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precludingin vivoassessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along withSREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease.


2007 ◽  
Vol 403 (3) ◽  
pp. 511-518 ◽  
Author(s):  
Prabodh Sadana ◽  
Edwards A. Park

The PGC-1s (peroxisome-proliferator-activated receptor γ co-activators) are a family of transcriptional regulators that induce the expression of various metabolic genes. PGC-1 proteins stimulate genes involved in mitochondrial biogenesis, fatty acid oxidation and hepatic gluconeogenesis. Previous studies have demonstrated that the PGC-1α and β isoforms interact with nuclear receptors through the conserved LXXLL (leucine-X-X-leucine-leucine) motifs. In the present study, we have investigated the mechanisms by which these PGC-1 isoforms stimulate gene expression. We have determined that the N-terminus of PGC-1 is responsible for transcriptional activation. Two conserved peptide motifs were identified in the N-terminus of PGC-1α and β isoforms. These domains were named AD1 and AD2 (activation domain 1 and 2). Deletion of both of these motifs decreased the induction of various PGC-1-regulated genes including the PEPCK (phosphoenolpyruvate carboxykinase) and CPT-I (carnitine palmitoyltransferase-I) genes. It was determined that amino acids containing a negative charge in AD1 and the leucine residues in AD2 were important for the transcriptional induction of the PEPCK and CPT-I genes. Disruption of the AD motifs did not diminish the ability of the PGC-1α protein to associate with the PEPCK or CPT-I genes. In addition, deletion of the AD domains did not eliminate the ability of PGC-1α to interact with the thyroid hormone receptor. The data indicate that the AD1 and AD2 motifs mediate the induction of many PGC-1- responsive genes, but they do not contribute to the recruitment of PGC-1 to target genes.


Sign in / Sign up

Export Citation Format

Share Document