scholarly journals The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes.

1984 ◽  
Vol 4 (11) ◽  
pp. 2479-2485 ◽  
Author(s):  
B S Loewy ◽  
S A Henry

We isolated a mutant of Saccharomyces cerevisiae defective in the formation of phosphatidylcholine via methylation of phosphatidylethanolamine. The mutant synthesized phosphatidylcholine at a reduced rate and accumulated increased amounts of methylated phospholipid intermediates. It was also found to be auxotrophic for inositol and allelic to an existing series of ino4 mutants. The ino2 and ino4 mutants, originally isolated on the basis of an inositol requirement, are unable to derepress the cytoplasmic enzyme inositol-1-phosphate synthase (myo-inositol-1-phosphate synthase; EC 5.5.1.4). The INO4 and INO2 genes were, thus, previously identified as regulatory genes whose wild-type product is required for expression of the INO1 gene product inositol-1-phosphate synthase (T. Donahue and S. Henry, J. Biol. Chem. 256:7077-7085, 1981). In addition to the identification of a new ino4-allele, further characterization of the existing series of ino4 and ino2 mutants, reported here, demonstrated that they all have a reduced capacity to convert phosphatidylethanolamine to phosphatidylcholine. The pleiotropic phenotype of the ino2 and ino4 mutants described in this paper suggests that the INO2 and INO4 loci are involved in the regulation of phospholipid methylation in the membrane as well as inositol biosynthesis in the cytoplasm.

1984 ◽  
Vol 4 (11) ◽  
pp. 2479-2485
Author(s):  
B S Loewy ◽  
S A Henry

We isolated a mutant of Saccharomyces cerevisiae defective in the formation of phosphatidylcholine via methylation of phosphatidylethanolamine. The mutant synthesized phosphatidylcholine at a reduced rate and accumulated increased amounts of methylated phospholipid intermediates. It was also found to be auxotrophic for inositol and allelic to an existing series of ino4 mutants. The ino2 and ino4 mutants, originally isolated on the basis of an inositol requirement, are unable to derepress the cytoplasmic enzyme inositol-1-phosphate synthase (myo-inositol-1-phosphate synthase; EC 5.5.1.4). The INO4 and INO2 genes were, thus, previously identified as regulatory genes whose wild-type product is required for expression of the INO1 gene product inositol-1-phosphate synthase (T. Donahue and S. Henry, J. Biol. Chem. 256:7077-7085, 1981). In addition to the identification of a new ino4-allele, further characterization of the existing series of ino4 and ino2 mutants, reported here, demonstrated that they all have a reduced capacity to convert phosphatidylethanolamine to phosphatidylcholine. The pleiotropic phenotype of the ino2 and ino4 mutants described in this paper suggests that the INO2 and INO4 loci are involved in the regulation of phospholipid methylation in the membrane as well as inositol biosynthesis in the cytoplasm.


1986 ◽  
Vol 6 (10) ◽  
pp. 3320-3328
Author(s):  
J P Hirsch ◽  
S A Henry

The INO1 gene of Saccharomyces cerevisiae encodes the regulated enzyme inositol-1-phosphate synthase, which catalyzes the first committed step in the synthesis of inositol-containing phospholipids. The expression of this gene was analyzed under conditions known to regulate phospholipid synthesis. RNA blot hybridization with a genomic clone for INO1 detected two RNA species of 1.8 and 0.6 kb. The abundance of the 1.8-kb RNA was greatly decreased when the cells were grown in the presence of the phospholipid precursor inositol, as was the enzyme activity of the synthase. Complementation analysis showed that this transcript encoded the INO1 gene product. The level of INO1 RNA was repressed 12-fold when the cells were grown in medium containing inositol, and it was repressed 33-fold when the cells were grown in the presence of inositol and choline together. The INO1 transcript was present at a very low level in cells containing mutations (ino2 and ino4) in regulatory genes unlinked to INO1 that result in inositol auxotrophy. The transcript was constitutively overproduced in cells containing a mutation (opi1) that causes constitutive expression of inositol-1-phosphate synthase and results in excretion of inositol. The expression of INO1 RNA was also examined in cells containing a mutation (cho2) affecting the synthesis of phosphatidylcholine. In contrast to what was observed in wild-type cells, growth of cho2 cells in medium containing inositol did not result in a significant decrease in INO1 RNA abundance. Inositol and choline together were required for repression of the INO1 transcript in these cells, providing evidence for a regulatory link between the synthesis of inositol- and choline-containing lipids. The level of the 0.6-kb RNA was affected, although to a lesser degree, by many of the same factors that influence INO1 expression.


1986 ◽  
Vol 6 (10) ◽  
pp. 3320-3328 ◽  
Author(s):  
J P Hirsch ◽  
S A Henry

The INO1 gene of Saccharomyces cerevisiae encodes the regulated enzyme inositol-1-phosphate synthase, which catalyzes the first committed step in the synthesis of inositol-containing phospholipids. The expression of this gene was analyzed under conditions known to regulate phospholipid synthesis. RNA blot hybridization with a genomic clone for INO1 detected two RNA species of 1.8 and 0.6 kb. The abundance of the 1.8-kb RNA was greatly decreased when the cells were grown in the presence of the phospholipid precursor inositol, as was the enzyme activity of the synthase. Complementation analysis showed that this transcript encoded the INO1 gene product. The level of INO1 RNA was repressed 12-fold when the cells were grown in medium containing inositol, and it was repressed 33-fold when the cells were grown in the presence of inositol and choline together. The INO1 transcript was present at a very low level in cells containing mutations (ino2 and ino4) in regulatory genes unlinked to INO1 that result in inositol auxotrophy. The transcript was constitutively overproduced in cells containing a mutation (opi1) that causes constitutive expression of inositol-1-phosphate synthase and results in excretion of inositol. The expression of INO1 RNA was also examined in cells containing a mutation (cho2) affecting the synthesis of phosphatidylcholine. In contrast to what was observed in wild-type cells, growth of cho2 cells in medium containing inositol did not result in a significant decrease in INO1 RNA abundance. Inositol and choline together were required for repression of the INO1 transcript in these cells, providing evidence for a regulatory link between the synthesis of inositol- and choline-containing lipids. The level of the 0.6-kb RNA was affected, although to a lesser degree, by many of the same factors that influence INO1 expression.


1989 ◽  
Vol 9 (9) ◽  
pp. 3869-3877
Author(s):  
P A Bricmont ◽  
T G Cooper

The allantoin-degradative pathway of Saccharomyces cerevisiae consists of several genes whose expression is highly induced by the presence of allophanic acid. Induced expression requires a functional DAL81 gene product. Analysis of these genes has demonstrated the presence of three cis-acting elements in the upstream regions: (i) an upstream activation sequence (UAS) required for transcriptional activation in an inducer-independent fashion, (ii) an upstream repression sequence (URS) that mediates inhibition of this transcriptional activation, and (iii) an upstream induction sequence (UIS) needed for a response to inducer. The UIS element mediates inhibition of URS-mediated function when inducer is present. We cloned and characterized the DAL81 gene and identified the element with which it was associated. The gene was found to encode a rare 3.2-kilobase-pair mRNA. The amount of DAL81-specific RNA responded neither to induction nor to nitrogen catabolite repression. Deletion of the DAL81 gene resulted in loss of induction but did not significantly affect basal level expression of the DAL7 and DUR1,2 genes or the UAS and URS functions present in plasmid constructions. These data suggest that (i) transcriptional activation of the DAL genes and their responses to inducer are mediated by different factors and cis-acting sequences and (ii) the UIS functions only when a wild-type DAL81 gene product is available.


1985 ◽  
Vol 5 (7) ◽  
pp. 1543-1553 ◽  
Author(s):  
G S Roeder ◽  
C Beard ◽  
M Smith ◽  
S Keranen

The his4-917 mutation of Saccharomyces cerevisiae results from the insertion of the Ty element Ty917 into the regulatory region of the HIS4 gene and renders the cell His-. The hist4-912 delta mutant, which carries a solo delta in the 5'-noncoding region of HIS4, is His+ at 37 degrees C but His- at 23 degrees C. Both these mutations interfere with HIS4 expression at the transcriptional level. The His- phenotype of both insertion mutations is suppressed by mutations at the SPT2 locus. The product of the wild-type SPT2 gene apparently represses HIS4 transcription in these mutant strains; this repression is relieved when the SPT2 gene is destroyed by mutation. The repression of transcription by SPT2 presumably results from an interaction between the SPT2+ gene product and Ty or delta sequences. In this paper, we report the cloning and DNA sequence analysis of the wild-type SPT2 gene and show that the gene is capable of encoding a protein of 333 amino acids in length. In addition, we show that a dominant mutation of the SPT2 gene results from the generation of an ochre codon which is presumed to lead to a shortened SPT2 gene product.


Sign in / Sign up

Export Citation Format

Share Document