Transcriptional and posttranscriptional control of c-myc gene expression in WEHI 231 cells

1986 ◽  
Vol 6 (11) ◽  
pp. 4112-4116
Author(s):  
R A Levine ◽  
J E McCormack ◽  
A Buckler ◽  
G E Sonenshein

Incubation of WEHI 231 cells, derived from a murine B-cell lymphoma, with antisera directed against its surface immunoglobulin results in the inhibition of growth within 24 h. Previously, we demonstrated that this treatment selectively affects cytoplasmic levels of c-myc mRNA (J. E. McCormack, V. H. Pepe, R. B. Kent, M. Dean, A. Marshak-Rothstein, and G. E. Sonenshein, Proc. Natl. Acad. Sci. USA 81:5546-5550, 1984). An initial increase in the cytoplasmic mRNA level is followed by a precipitous drop. We now show that the early increase results from a dramatic increase in the rate of c-myc gene transcription, as well as from partial stabilization of the mRNA in the cytoplasm. The later decrease results from a shutdown in transcription of the c-myc gene and a return to the normal lability of the cytoplasmic c-myc mRNA. Treatment with phorbol ester, like treatment with anti-immunoglobulin sera, inhibited WEHI 231 cell growth and caused similar changes in cytoplasmic c-myc mRNA levels, which can also be related to alterations in c-myc gene transcription. These results indicate that the control of c-myc gene expression in B cells is effected through regulation at multiple levels.

1986 ◽  
Vol 6 (11) ◽  
pp. 4112-4116 ◽  
Author(s):  
R A Levine ◽  
J E McCormack ◽  
A Buckler ◽  
G E Sonenshein

Incubation of WEHI 231 cells, derived from a murine B-cell lymphoma, with antisera directed against its surface immunoglobulin results in the inhibition of growth within 24 h. Previously, we demonstrated that this treatment selectively affects cytoplasmic levels of c-myc mRNA (J. E. McCormack, V. H. Pepe, R. B. Kent, M. Dean, A. Marshak-Rothstein, and G. E. Sonenshein, Proc. Natl. Acad. Sci. USA 81:5546-5550, 1984). An initial increase in the cytoplasmic mRNA level is followed by a precipitous drop. We now show that the early increase results from a dramatic increase in the rate of c-myc gene transcription, as well as from partial stabilization of the mRNA in the cytoplasm. The later decrease results from a shutdown in transcription of the c-myc gene and a return to the normal lability of the cytoplasmic c-myc mRNA. Treatment with phorbol ester, like treatment with anti-immunoglobulin sera, inhibited WEHI 231 cell growth and caused similar changes in cytoplasmic c-myc mRNA levels, which can also be related to alterations in c-myc gene transcription. These results indicate that the control of c-myc gene expression in B cells is effected through regulation at multiple levels.


1990 ◽  
Vol 10 (3) ◽  
pp. 918-922 ◽  
Author(s):  
M Khosla ◽  
S M Robbins ◽  
G B Spiegelman ◽  
G Weeks

DdrasG gene expression during the early development of Dictyostelium discoideum has been examined in detail. The amount of DdrasG-specific mRNA increased approximately twofold during the first 2 to 3 h of development and then declined rapidly, reaching negligible levels by the aggregation stage. The increase in mRNA levels that occurred during the first 2 to 3 h of development also occurred during differentiation in cell suspensions and was enhanced when cells were shaken rapidly. This initial increase was unaffected by cell density. When cells were set up to differentiate on filters, the addition of a glucose-amino acid mixture slightly delayed differentiation and had a similar effect on the expression of the gene. The decline in DdrasG expression during development did not occur when cells were treated with cycloheximide, suggesting that the expression of a developmentally regulated gene product is essential for the reduction of DdrasG gene mRNA. There was no decrease in DdrasG mRNA level during differentiation in shake suspension, but the decrease did occur upon application of pulses of cyclic AMP to shaking cultures. The application of a continuously high level of cyclic AMP delayed the increase in expression of the gene and did not result in the subsequent decline. These results suggest that the induction of a functional cyclic AMP relay system is important in reducing DdrasG gene mRNA levels.


1996 ◽  
Vol 150 (2) ◽  
pp. 287-298 ◽  
Author(s):  
F Kambe ◽  
H Seo

Abstract The molecular mechanism for hormone- and serum-dependent regulation of thyroglobulin (TG) gene expression was studied. A construct of rat TG promoter (−178 to −3) linked to a luciferase gene was transfected into TSH-, insulin- and serum-deprived FRTL-5 cells. Addition of TSH, insulin or serum augmented the luciferase activity. The endogenous TG mRNA level was also increased, indicating that the promoter used confers responsiveness of TG gene to these additives. The possible involvement of thyroid-transcription factors, TTF-1, TTF-2 and Pax-8, in the induction of TG gene transcription was studied using an electrophoretic mobility shift assay. Since the protein/DNA ratio in FRTL-5 cell extracts was significantly increased by these additives, binding activities of these factors per unit of DNA were examined. It was demonstrated that TSH, insulin or serum increased not only TTF-2 binding activity but also the binding activities of TTF-1 and Pax-8. However, the magnitude of the increase in TTF-1 and Pax-8 mRNA levels per unit of DNA was less than that of the binding activity. Taken together, our results suggest that TSH, insulin and serum increase the binding activities of TTF-1 and Pax-8 to the TG promoter presumably through the posttranslational modification of the factors, thereby enhancing TG gene transcription. Journal of Endocrinology (1996) 150, 287–298


1990 ◽  
Vol 10 (3) ◽  
pp. 918-922
Author(s):  
M Khosla ◽  
S M Robbins ◽  
G B Spiegelman ◽  
G Weeks

DdrasG gene expression during the early development of Dictyostelium discoideum has been examined in detail. The amount of DdrasG-specific mRNA increased approximately twofold during the first 2 to 3 h of development and then declined rapidly, reaching negligible levels by the aggregation stage. The increase in mRNA levels that occurred during the first 2 to 3 h of development also occurred during differentiation in cell suspensions and was enhanced when cells were shaken rapidly. This initial increase was unaffected by cell density. When cells were set up to differentiate on filters, the addition of a glucose-amino acid mixture slightly delayed differentiation and had a similar effect on the expression of the gene. The decline in DdrasG expression during development did not occur when cells were treated with cycloheximide, suggesting that the expression of a developmentally regulated gene product is essential for the reduction of DdrasG gene mRNA. There was no decrease in DdrasG mRNA level during differentiation in shake suspension, but the decrease did occur upon application of pulses of cyclic AMP to shaking cultures. The application of a continuously high level of cyclic AMP delayed the increase in expression of the gene and did not result in the subsequent decline. These results suggest that the induction of a functional cyclic AMP relay system is important in reducing DdrasG gene mRNA levels.


2004 ◽  
Vol 287 (4) ◽  
pp. L764-L773 ◽  
Author(s):  
Loretta Sparkman ◽  
Vijayakumar Boggaram

Interleukin (IL)-8, a C-X-C chemokine, is a potent chemoattractant and an activator for neutrophils, T cells, and other immune cells. The airway and respiratory epithelia play important roles in the initiation and modulation of inflammatory responses via production of cytokines and surfactant. The association between elevated levels of nitric oxide (NO) and IL-8 in acute lung injury associated with sepsis, acute respiratory distress syndrome, respiratory syncytial virus infection in infants, and other inflammatory diseases suggested that NO may play important roles in the control of IL-8 gene expression in the lung. We investigated the role of NO in the control of IL-8 gene expression in H441 lung epithelial cells. We found that a variety of NO donors significantly induced IL-8 mRNA levels, and the increase in IL-8 mRNA was associated with an increase in IL-8 protein. NO induction of IL-8 mRNA was due to increases in IL-8 gene transcription and mRNA stability. NO induction of IL-8 mRNA levels was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively, and 8-bromo-cGMP did not increase IL-8 mRNA levels. This indicated that NO induces IL-8 mRNA levels independently of changes in the intracellular cGMP levels. NO induction of IL-8 mRNA was significantly reduced by inhibitors of extracellular regulated kinase and protein kinase C. IL-8 induction by NO was also reduced by hydroxyl radical scavengers such as dimethyl sulfoxide and dimethylthiourea, indicating the involvement of hydroxyl radicals in the induction process. NO induction of IL-8 gene expression could be a significant contributing factor in the initiation and induction of inflammatory response in the respiratory epithelium.


Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3214-3224 ◽  
Author(s):  
Sofia Mavridou ◽  
Maria Venihaki ◽  
Olga Rassouli ◽  
Christos Tsatsanis ◽  
Dimitris Kardassis

Scavenger receptor class B type I (SR-BI) facilitates the reverse transport of excess cholesterol from peripheral tissues to the liver via high-density lipoproteins. In steroidogenic tissues, SR-BI supplies cholesterol for steroid hormone production. We show here that the transcription of the human SR-BI gene is subject to feedback inhibition by glucocorticoid in adrenal and ovarian cells. SR-BI mRNA levels were increased in adrenals from corticosterone-insufficient Crh−/− mice, whereas corticosterone replacement by oral administration inhibited SR-BI gene expression in these mice. SR-BI mRNA levels were increased in adrenals from wild-type mice treated with metyrapone, a drug that blocks corticosterone synthesis. Experiments in adrenocortical H295R and ovarian SKOV-3 cells using cycloheximide and siRNA-mediated gene silencing revealed that glucocorticoid-mediated inhibition of SR-BI gene transcription requires de novo protein synthesis and the glucocorticoid receptor (GR). No direct binding of GR to the SR-BI promoter could be demonstrated in vitro and in vivo, suggesting an indirect mechanism of repression of SR-BI gene transcription by GR in adrenal cells. Deletion analysis established that the region of the human SR-BI promoter between nucleotides −201 and −62 is sufficient to mediate repression by glucocorticoid. This region contains putative binding sites for transcriptional repressors that could play a role in SR-BI gene regulation in response to glucocorticoid. In summary, this is the first report showing that glucocorticoid suppress SR-BI expression suggesting that steroidogenic tissues maintain steroid hormone homeostasis by prohibiting SR-BI-mediated high-density lipoprotein cholesterol uptake when the endogenous levels of glucocorticoid are elevated.


1997 ◽  
Vol 82 (7) ◽  
pp. 2210-2214
Author(s):  
Catarina Bjelfman ◽  
Torbjörn G. Söderström ◽  
Einar Brekkan ◽  
Bo Johan Norlén ◽  
Lars Egevad ◽  
...  

Androgens are implicated in the development of prostate cancer (CAP) and benign prostate hyperplasia. The conversion of testosterone to the more potent metabolite dihydrotestosterone by prostate-specific steroid 5α-reductase type 2 (5α-red2) is a key mechanism in the action of androgens in the prostate and is important in the promotion and progression of prostate diseases. Manipulation of the turnover of androgens is thus fundamental in the pharmacological treatment strategy. We have developed a sensitive solution hybridization method for quantification of the gene expression of 5α-red2 in core needle biopsies of the prostate. The 5α-red2-specific messenger RNA (mRNA) levels were measured in 50 human prostate transrectal ultrasound-guided core biopsies obtained from 31 outpatients (median age 72, range 57–88 yr) undergoing biopsy for diagnostic purposes. Significant differences were observed in the gene expression of 5α-red2 between cancerous and noncancerous tissue. In the 14 biopsies judged cancerous, the median 5α-red mRNA levels were 3.5 amol/ng total RNA compared with 12.0 amol/ng total RNA in the biopsies showing no cancer (P = 0.0018). The median 5α-red2 mRNA level in noncancerous tissue was thus 3.4 times higher than in the cancerous specimens.


2002 ◽  
Vol 69 (1) ◽  
pp. 13-26 ◽  
Author(s):  
AURORE RINCHEV-ALARNOLD ◽  
LUCETTE BELAIR ◽  
JEAN DJIANE

Secretory IgA found in external secretions are constituted by polymeric IgA (pIgA) bound to the extra-cellular part of the polymeric immunoglobulin receptor (pIgR). The receptor mediates transcytosis of pIgA across epithelial cells. The aim of the present study was to analyse the evolution of pIgR expression in the sheep mammary gland during the development of the mammary gland and to analyse its hormonal regulation. Gene expression of the pIgR was analysed in sheep mammary gland during pregnancy and lactation. By Northern Blot analysis, we observed that low levels of pIgR mRNA are expressed until day 70 of pregnancy. Accumulation of pIgR mRNA started during the third part of pregnancy and intensified 3 d after parturition to reach highest levels during established lactation (day 70). In situ hybridization analysis was used to confirm the increase in pIgR gene expression per mammary epithelial cell. In order to examine the hormonal regulation of the pIgR expression, virgin ewes were hormonally treated. Treatment with oestradiol and progesterone increased pIgR mRNA levels slightly. Subsequent addition of glucocorticoids induced a significant accumulation of pIgR mRNA in the mammary gland of the treated animals. Immunohistochemical analysis was performed to verify that the increase of pIgR mRNA level was associated with enhancement of the pIgR protein in mammary cells. No increase of pIgR mRNA levels were observed if PRL secretion was blocked by bromocryptine injections throughout the hormonal procedure. In conclusion, the present experiments suggest that the enhancement of pIgR levels during lactation result from combined effects of both prolactin and glucocorticoids.


1999 ◽  
Vol 277 (3) ◽  
pp. L566-L572 ◽  
Author(s):  
John L. Berk ◽  
Nima Massoomi ◽  
Christine Hatch ◽  
Ronald H. Goldstein

Elastolytic lung injury disrupts cell barriers, flooding alveoli and producing regional hypoxia. Abnormal O2 tensions may alter repair of damaged elastin fibers. To determine the effect of hypoxia on extravascular elastin formation, we isolated rat lung fibroblasts and cultured them under a variety of O2 conditions. Hypoxia downregulated tropoelastin mRNA in a dose- and time-related fashion while upregulating glyceraldehyde-3-phosphate dehydrogenase mRNA levels. The changes in tropoelastin gene expression were not due to cell toxicity as measured by chromium release and cell proliferation studies. Neither cycloheximide nor actinomycin D abrogated this effect. Hypoxia induced early decreases in tropoelastin mRNA stability; minor suppression of gene transcription occurred later. When returned to 21% O2, tropoelastin mRNA recovered to control levels in part by upregulating tropoelastin gene transcription. Taken together, these data indicate that hypoxia regulates tropoelastin gene expression and may alter repair of acutely injured lung.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2733-2740 ◽  
Author(s):  
K Yoshimura ◽  
RG Crystal

Abstract Human neutrophil elastase (NE), a 29-Kd potent serine protease stored in azurophilic granules of mature neutrophils, is coded for by the NE gene, a single copy gene with 5 exons spanning a 6-kb segment of chromosome 11 at q14. With the knowledge that the NE gene expression is limited to early myeloid cell differentiation, mechanisms modulating expression of the NE gene were evaluated in the HL-60 promyelocytic leukemia cell line, a model of early bone marrow precursor cells. Consistent with the presence of NE messenger RNA (mRNA) transcripts in undifferentiated HL-60 cells, nuclear transcription run-on analyses showed that HL-60 cells actively transcribed the NE gene. However, the transcription rate of the NE gene was relatively low, only 40% of the myeloperoxidase gene, a gene expressed in parallel with NE. When induced toward the mononuclear phagocytic lineage with phorbol 12- myristate 13-acetate (PMA), HL-60 cells exhibited marked suppression of NE gene transcription, declining to 17% of the resting rate within 2 days. Induction toward mononuclear phagocytic lineage differentiation caused no change in NE mRNA transcript half-life (T1/2), but mRNA levels decreased markedly over time, with levels undetectable 1.5 days after PMA stimulation. In contrast, when induced toward the myelocytic lineage with dimethyl sulfoxide, the rate of NE gene transcription increased 1.9-fold within 5 days. Interestingly, the mRNA transcript levels increased 2.5-fold by 5 days despite the fact that induction toward myelocytic lineage differentiation was accompanied by a marked reduction of NE mRNA transcript T1/2. Together, these observations suggest that the NE gene expression during bone marrow differentiation is modulated mainly at the transcriptional level, with some posttranscriptional modulation contributing, particularly during myelocytic lineage differentiation.


Sign in / Sign up

Export Citation Format

Share Document