The Xenopus laevis U2 gene distal sequence element (enhancer) is composed of four subdomains that can act independently and are partly functionally redundant

1989 ◽  
Vol 9 (4) ◽  
pp. 1682-1690
Author(s):  
G Tebb ◽  
I W Mattaj

The sequences involved in enhancement of transcription of the Xenopus U2 small nuclear RNA gene by the distal sequence element (DSE) of its promoter were analyzed in detail by microinjection of mutant genes into Xenopus oocytes. The DSE was shown to be roughly 60 base pairs long. Within this region, four motifs were found to contribute to DSE function: an ATGCAAAT octamer sequence, an SpI binding site, and two additional motifs which, since they are related in sequence, may bind the same transcription factor. These motifs were named D2 (for DSE; U2). Both the octamer sequence and the SpI site bound nuclear factors in vitro, but no factor binding to the D2 motifs was detected. All four elements were independently capable of enhancing transcription of the U2 gene to some extent. Furthermore, when assayed under both competitive and noncompetitive conditions, the individual units of the DSE displayed functional redundancy.

1989 ◽  
Vol 9 (4) ◽  
pp. 1682-1690 ◽  
Author(s):  
G Tebb ◽  
I W Mattaj

The sequences involved in enhancement of transcription of the Xenopus U2 small nuclear RNA gene by the distal sequence element (DSE) of its promoter were analyzed in detail by microinjection of mutant genes into Xenopus oocytes. The DSE was shown to be roughly 60 base pairs long. Within this region, four motifs were found to contribute to DSE function: an ATGCAAAT octamer sequence, an SpI binding site, and two additional motifs which, since they are related in sequence, may bind the same transcription factor. These motifs were named D2 (for DSE; U2). Both the octamer sequence and the SpI site bound nuclear factors in vitro, but no factor binding to the D2 motifs was detected. All four elements were independently capable of enhancing transcription of the U2 gene to some extent. Furthermore, when assayed under both competitive and noncompetitive conditions, the individual units of the DSE displayed functional redundancy.


1992 ◽  
Vol 12 (7) ◽  
pp. 3247-3261
Author(s):  
S Murphy ◽  
J B Yoon ◽  
T Gerster ◽  
R G Roeder

The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies have indicated that the PSE and octamer elements work cooperatively. The present study has identified and characterized a novel transcription factor (designated PTF) which specifically binds to the PSE sequence of both RNA polymerase II- and RNA polymerase III-transcribed snRNA genes. PTF binding is markedly potentiated by Oct binding to an adjacent octamer site. This potentiation is effected by Oct-1, Oct-2, or the conserved POU domain of these factors. In agreement with these results and despite the independent binding of Octs to the promoter, PTF and Oct-1 enhance transcription from the 7SK promoter in an interdependent manner. Moreover, the POU domain of Oct-1 is sufficient for significant in vitro activity in the presence of PTF. These results suggest that essential activation domains reside in PTF and that the potentiation of PTF binding by Octs plays a key role in the function of octamer-containing snRNA gene enhancers.


1996 ◽  
Vol 16 (3) ◽  
pp. 1275-1281 ◽  
Author(s):  
J M Li ◽  
R P Haberman ◽  
W F Marzluff

The proximal sequence element (PSE) for the sea urchin U6 small nuclear RNA gene has been defined. The most critical nucleotides for expression, located 61 to 64 nucleotides (nt) from the transcription start site, are 4 nt, AACT, at the 5' end of the PSE. Two nucleotide mutations in this region abolish transcription of the sea urchin U6 gene in vitro. The same two nucleotide mutations greatly reduce the binding of specific factors detected by an electrophoretic mobility shift assay. There is also a conserved AC dinucleotide 57 nt from the start site of the sea urchin U1 and U2 PSEs. The sea urchin U1 and U2 PSEs were substituted for the sea urchin U6 PSE, with the conserved AC sequences aligned with those of the U6 PSE. Both of these genes were expressed at levels higher than those observed with the wild-type U6 gene. Similar complexes are formed on the U1 and U2 PSEs, and formation of the complexes is inhibited efficiently by the U6 PSE. In addition, the E-box sequence present upstream of the PSE enhances U6 transcription from both the U1 and U2 PSEs. Finally, depletion of a nuclear extract with a DNA affinity column containing the U6 PSE sequence reduces expression of the U6 genes driven by the U6, U1, or U2 PSE but does not affect expression of the 5S rRNA gene. These data support the possibility that the same factor(s) interacts with the PSE sequences of the U1, U2, and U6 small nuclear RNA genes expressed in early sea urchin embryogenesis.


1992 ◽  
Vol 12 (7) ◽  
pp. 3247-3261 ◽  
Author(s):  
S Murphy ◽  
J B Yoon ◽  
T Gerster ◽  
R G Roeder

The promoters of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes contain an essential and highly conserved proximal sequence element (PSE) approximately 55 bp upstream from the transcription start site. In addition, the upstream enhancers of all snRNA genes contain binding sites for octamer-binding transcription factors (Octs), and functional studies have indicated that the PSE and octamer elements work cooperatively. The present study has identified and characterized a novel transcription factor (designated PTF) which specifically binds to the PSE sequence of both RNA polymerase II- and RNA polymerase III-transcribed snRNA genes. PTF binding is markedly potentiated by Oct binding to an adjacent octamer site. This potentiation is effected by Oct-1, Oct-2, or the conserved POU domain of these factors. In agreement with these results and despite the independent binding of Octs to the promoter, PTF and Oct-1 enhance transcription from the 7SK promoter in an interdependent manner. Moreover, the POU domain of Oct-1 is sufficient for significant in vitro activity in the presence of PTF. These results suggest that essential activation domains reside in PTF and that the potentiation of PTF binding by Octs plays a key role in the function of octamer-containing snRNA gene enhancers.


1996 ◽  
Vol 16 (10) ◽  
pp. 5419-5426 ◽  
Author(s):  
L Bai ◽  
Z Wang ◽  
J B Yoon ◽  
R G Roeder

The proximal sequence element (PSE)-binding transcription factor (PTF), which binds the PSE of both RNA polymerase II- and RNA polymerase III-transcribed mammalian small nuclear RNA (snRNA) genes, is essential for their transcription. We previously reported the purification of human PTF, a complex of four subunits, and the molecular cloning and characterization of PTF gamma and delta subunits. Here we describe the isolation and expression of a cDNA encoding PTF beta, as well as functional studies using anti-PTF beta antibodies. Native PTF beta, in either protein fractions or a PTF-Oct-1-DNA complex, can be recognized by polyclonal antibodies raised against recombinant PTF beta. Immunodepletion studies show that PTF beta is required for transcription of both classes of snRNA genes in vitro. In addition, immunoprecipitation analyses demonstrate that substantial and similar molar amounts of TATA-binding protein (TBP) and TFIIIB90 can weakly associate with PTF at low salt conditions, but this association is dramatically reduced at high salt concentrations. Along with our previous demonstration of both physical interactions between PTF gamma/PTF delta and TBP and the involvement of TFIIIB90 in the transcription of class III snRNA genes, these results are consistent with the notion that a TBP-containing complex related to TFIIIB is required for the transcription of class III snRNA genes, and acts through weak interaction with the four-subunit PTF.


1996 ◽  
Vol 16 (1) ◽  
pp. 1-9 ◽  
Author(s):  
J B Yoon ◽  
R G Roeder

The proximal sequence element (PSE)-binding transcription factor (PTF) specifically recognizes the PSEs of both RNA polymerase II- and RNA polymerase III-transcribed small nuclear RNA (snRNA) genes. We previously have shown that PTF purified from human HeLa cells is a multisubunit complex of four polypeptides designated PTF alpha, -beta, -gamma, and -delta. We now report the isolation and expression of cDNAs encoding PTF gamma and PTF delta, as well as functional studies with cognate antibodies that recognize the native PTF complex in HeLa extracts. Immunoprecipitation studies confirm that the four PTF subunits originally found to copurify during conventional chromatography indeed form a tightly associated complex; they further show that the PTF so defined, including the gamma and delta subunits specifically, is essential for transcription of both class II and class III snRNA genes. Immunoprecipitation assays also show a weak substoichiometric association of the TATA-binding protein (TBP) with PTF, consistent with the previous report of a PTF-related complex (SNAPc) containing substoichiometric levels of TBP and a component (SNAPc43) identical in sequence to the PTF gamma reported here. Glutathione S-transferase pulldown assays further indicate relatively strong direct interactions of both recombinant PTF gamma and PTF delta with TBP, consistent either with the natural association of TBP with PTF in a semistable TBP-TBP-associated factor complex or with possible functional interactions between PSE-bound PTF and TATA-bound TBP during promoter activation. In addition, we show that in extracts depleted of TBP and TBP-associated factors, transcription from the U1 promoter is restored by recombinant TBP but not by TFIID or TFIIIB, indicating that transcription of class II snRNA genes requires a TBP complex different from the one used for mRNA-encoding genes.


1994 ◽  
Vol 14 (9) ◽  
pp. 6337-6349 ◽  
Author(s):  
S E Wells ◽  
M Ares

Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.


BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (17) ◽  
Author(s):  
Chan Lin ◽  
Yujie Feng ◽  
Xueyan Peng ◽  
Jiaming Wu ◽  
Weili Wang ◽  
...  

1993 ◽  
Vol 13 (9) ◽  
pp. 5377-5382
Author(s):  
B Datta ◽  
A M Weiner

U6 small nuclear RNA (snRNA) is the most highly conserved of the five spliceosomal snRNAs that participate in nuclear mRNA splicing. The proposal that U6 snRNA plays a key catalytic role in splicing [D. Brow and C. Guthrie, Nature (London) 337:14-15, 1989] is supported by the phylogenetic conservation of U6, the sensitivity of U6 to mutation, cross-linking of U6 to the vicinity of the 5' splice site, and genetic evidence for extensive base pairing between U2 and U6 snRNAs. We chose to mutate the phylogenetically invariant 41-ACAGAGA-47 and 53-AGC-55 sequences of human U6 because certain point mutations within the homologous regions of Saccharomyces cerevisiae U6 selectively block the first or second step of mRNA splicing. We found that both sequences are more tolerant to mutation in human cells (assayed by transient expression in vivo) than in S. cerevisiae (assayed by effects on growth or in vitro splicing). These differences may reflect different rate-limiting steps in the particular assays used or differential reliance on redundant RNA-RNA or RNA-protein interactions. The ability of mutations in U6 nucleotides A-45 and A-53 to selectively block step 2 of splicing in S. cerevisiae had previously been construed as evidence that these residues might participate directly in the second chemical step of splicing; an indirect, structural role seems more likely because the equivalent mutations have no obvious phenotype in the human transient expression assay.


Sign in / Sign up

Export Citation Format

Share Document