Ligand and protein kinase C downmodulate the colony-stimulating factor 1 receptor by independent mechanisms

1989 ◽  
Vol 9 (7) ◽  
pp. 2890-2896
Author(s):  
J R Downing ◽  
M F Roussel ◽  
C J Sherr

The turnover of the colony-stimulating factor 1 receptor (CSF-1R), the c-fms proto-oncogene product, is accelerated by ligand binding or by activators of protein kinase C (PKC), such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The mechanisms of ligand- and TPA-induced downmodulation were shown to differ by the following criteria. First, in cells in which PKC was downmodulated, CSF-1R reexpressed at the cell surface remained sensitive to ligand but was refractory to TPA-induced degradation. Second, a kinase-defective receptor containing a methionine-for-lysine substitution at amino acid 616 at its ATP-binding site failed to undergo ligand-induced downmodulation but remained responsive to TPA. Following CSF-1 stimulation, no intermediates of receptor degradation could be immunoprecipitated with polyvalent antisera to CSF-1R. In contrast, TPA induced specific proteolytic cleavage of the receptor near its transmembrane segment, resulting in the release of the extracellular ligand-binding domain from the cell and the generation of an intracellular fragment containing the kinase domain. Two-dimensional phosphopeptide mapping demonstrated no new sites of phosphorylation in response to TPA in either the residual intact receptor or the intracellular proteolytic fragment. Therefore, PKC appears not to trigger downmodulation by directly phosphorylating the receptor but, rather, activates a protease which recognizes CSF-1R as a substrate.

1989 ◽  
Vol 9 (7) ◽  
pp. 2890-2896 ◽  
Author(s):  
J R Downing ◽  
M F Roussel ◽  
C J Sherr

The turnover of the colony-stimulating factor 1 receptor (CSF-1R), the c-fms proto-oncogene product, is accelerated by ligand binding or by activators of protein kinase C (PKC), such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The mechanisms of ligand- and TPA-induced downmodulation were shown to differ by the following criteria. First, in cells in which PKC was downmodulated, CSF-1R reexpressed at the cell surface remained sensitive to ligand but was refractory to TPA-induced degradation. Second, a kinase-defective receptor containing a methionine-for-lysine substitution at amino acid 616 at its ATP-binding site failed to undergo ligand-induced downmodulation but remained responsive to TPA. Following CSF-1 stimulation, no intermediates of receptor degradation could be immunoprecipitated with polyvalent antisera to CSF-1R. In contrast, TPA induced specific proteolytic cleavage of the receptor near its transmembrane segment, resulting in the release of the extracellular ligand-binding domain from the cell and the generation of an intracellular fragment containing the kinase domain. Two-dimensional phosphopeptide mapping demonstrated no new sites of phosphorylation in response to TPA in either the residual intact receptor or the intracellular proteolytic fragment. Therefore, PKC appears not to trigger downmodulation by directly phosphorylating the receptor but, rather, activates a protease which recognizes CSF-1R as a substrate.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 123-129 ◽  
Author(s):  
E Sariban ◽  
K Imamura ◽  
M Sherman ◽  
V Rothwell ◽  
P Pantazis ◽  
...  

Abstract The colony-stimulating factor-1 (CSF-1) regulates survival, growth, and differentiation of monocytes by binding to a single class of high- affinity receptors. The CSF-1 receptor is identical to the product of the c-fms protooncogene. The present studies monitored the effects of TPA and CSF-1 on c-fms gene expression in human monocytes. The results demonstrate that TPA downmodulates the constitutive expression of c-fms mRNA to low but detectable levels. Treatment of human monocytes with TPA was similarly associated with decreases in levels of the 138- and 125-Kd c-fms-encoded proteins. However, the kinetics of c-fms protein downmodulation indicated independent effects of TPA on c-fms expression at the RNA and protein levels. Furthermore, c-fms protein levels subsequently recovered despite persistently low levels of c-fms mRNA. Although previous studies demonstrated that c-fms protein is down- regulated in the presence of CSF-1, the present results indicate that CSF-1 also downregulates levels of c-fms mRNA. Moreover, the results indicate that CSF-1 increases protein kinase C activity in the membrane fraction. Together, these findings suggest that c-fms gene expression is differentially regulated at both the RNA and protein levels after activation of protein kinase C in human monocytes treated with TPA and CSF-1.


1997 ◽  
Vol 19 (2) ◽  
pp. 121-130 ◽  
Author(s):  
K Imakawa ◽  
KD Carlson ◽  
WJ McGuire ◽  
RK Christenson ◽  
A Taylor

Interferon-tau (oIFNtau), the major secretory product of ovine conceptuses between days 13 and 21 (day 0=day of estrus) of pregnancy, is implicated in the process of maternal recognition of pregnancy. Culturing of day-14 and day-16 conceptus tissues in the presence of human granulocyte macrophage-colony stimulating factor (hGM-CSF) or interleukin-3 (IL-3) produces a marked increase in oIFNtau mRNA and protein expression. Since GM-CSF and IL-3 are localized at the luminal and glandular epithelia of the ovine endometrium, maternally derived GM-CSF and IL-3 may affect conceptus production of oIFNtau in a paracrine manner. However, the molecular mechanisms by which endometrial GM-CSF and IL-3 up-regulate oIFNtau production have not been defined. As an initial investigation of the signaling pathway regulating the GM-CSF induction of the oIFNtau gene, day-16 conceptuses were treated with an inducer, phorbol 12-myristate 13-acetate (PMA) and an inhibitor, calphostin C of the protein kinase C (PKC) pathway. Treatment with either 150 units/ml hGM-CSF (P<0.01) or 10 nM PMA (P<0.05) resulted in a significant increase in oIFNtau mRNA expression. Pretreatment of conceptuses with 1 microM PMA for 12 h to produce PKC-deficient tissues or treatment with 50 mM calphostin C abolished the hGM-CSF-induced increase in oIFNtau mRNA. An in vitro expression system was established for the analysis of oIFNtau gene regulatory sequences. The oIFNtau010 gene has been isolated previously and found to be the principal oIFNtau gene up-regulated during the preimplantation period. 5'-Flanking regions of the oIFNtau010 gene, 2 kb and 0.8 kb, were cloned into a basic chloramphenicol acetyltransferase reporter plasmid. These oIFNtau010 promoter constructs, along with expression controls, were transfected into human choriocarcinoma cells (JAR and JEG3) and their responsiveness to hGM-CSF and second messenger system activators including PMA, calcium ionophore (A23187) and 8-bromo-cAMP were characterized. The oIFNtau010 promoter constructs were up-regulated by hGM-CSF and PMA treatments (P<0.01). Combined treatment with PMA and A23187 prevented the promoter activation seen with PMA alone. The conceptus culture data, along with the results from the transfection experiments, suggest that the stimulatory effect of GM-CSF on oIFNtau is mediated through the PKC second messenger system.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 894-900 ◽  
Author(s):  
CM Heyworth ◽  
TM Dexter ◽  
SE Nicholls ◽  
AD Whetton

The effects of direct activators of protein kinase C (PKC) (the phorbol ester tetradecanoyl phorbol myristic acid [TPA] or bryostatin) on the ability of a highly enriched population of granulocyte-macrophage colony-forming cells (GM-CFC) to proliferate and develop in soft agar was assessed. In the absence of colony stimulating factors, the PKC activators did not stimulate colony formation. However, in the presence of optimal concentrations of granulocyte colony-stimulating factor (G- CSF) or interleukin-6 (IL-6), TPA or bryostatin markedly elevated the number of colonies formed from the GM-CFC. In the absence of TPA, IL-6, and G-CSF, respectively, both stimulated the formation of about 3% of the colonies observed when IL-3 was present. When TPA plus G-CSF or IL- 6 were added together, this figure increased to 48% and 54%, respectively. In both instances, the types of mature cells formed was altered from colonies of mature neutrophilic cells to a mixture consisting predominantly of macrophages with some neutrophils. Similar results were observed when bryostatin replaced TPA in these assays. When single cell colony-forming assays were performed, the same results were obtained. The presence of G-CSF, or IL-6, and the activator of PKC used (TPA or bryostatin) was required throughout the colony-forming assay for an optimal synergistic effect to be observed. These data indicate that agents that activate PKC can promote the proliferation and development of GM-CFC via a synergistic interaction with G-CSF or IL-6. Furthermore, there is an apparent role for PKC in development and possibly lineage commitment of GM-CFC.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1314-1320 ◽  
Author(s):  
K Yamato ◽  
Z El-Hajjaoui ◽  
JF Kuo ◽  
HP Koeffler

Abstract Granulocyte-monocyte colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor. Mesenchymal cells produce abundant GM-CSF in response to tumor necrosis factor alpha (TNF). We wished to determine (1) what cellular pathways enhanced levels of GM-CSF mRNA, and (2) if TNF used any of these pathways. Modulation in levels of GM- CSF mRNA in human fibroblasts (WI-38) was studied by using Northern blot analysis. Markedly increased levels of GM-CSF mRNA occurred in these cells after exposure to sodium fluoride (NaF) and the effect of NaF was slightly enhanced by aluminum chloride; these results suggest that accumulation of GM-CSF mRNA can occur by activating a G-binding protein. Stimulators of protein kinase C dramatically increased levels of GM-CSF mRNA; however, blockade of protein kinase C activity did not attenuate accumulation of GM-CSF mRNA stimulated by TNF and NaF. Exposure to ouabain increased levels of GM-CSF mRNA and this effect was prominently enhanced in the presence of low concentrations of extracellular K+ and was almost abolished in high concentrations of extracellular K+. A monovalent ionophore (monensin) also increased levels of GM-CSF mRNA. Both ouabain and monensin can increase intracellular Ca++ concentration (Cai++) through Na+-Ca++ exchange. A calcium channel blocker (diltiazem) blocked the increased levels of GM- CSF mRNA mediated by ouabain, but could not block the stimulation mediated by TNF alpha. Ca++ ionophores also increased levels of GM-CSF mRNA and rapidly increased levels of Cai++. TNF did not increase Cai++ and, moreover, was able to stimulate accumulation of GM-CSF mRNA in the absence of extracellular Ca++. Taken together, we have found that several different cellular pathways can lead to prominent accumulation of GM-CSF mRNA in mesenchymal cells including (1) activation of protein kinase C, (2) increase in Cai++, and (3) stimulation of G-binding protein. Our studies show that TNF appears to increase levels of GM-CSF mRNA independent of protein kinase C activity or levels of Cai++.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1045-1051
Author(s):  
M Nishimura ◽  
K Kaku ◽  
Y Azuno ◽  
K Okafuji ◽  
Y Inoue ◽  
...  

Phosphoinositol turnover, diacylglycerol generation, protein kinase C (PK-C) activity, and intracellular cyclic nucleotides were studied in an established human leukemia cell line, HL-60, in response to one of the hematopoietic cytokines, granulocyte-macrophage colony-stimulating factor (GM-CSF). Continuous exposure of HL-60 cells to GM-CSF induced the cell differentiation that was evaluated by the nitroblue tetrazolium (NBT) reducing activity. GM-CSF also exhibited a proliferative effect on HL-60 cells. GM-CSF at 1 nmol/L, an optimal concentration for cell growth and cell differentiation, induced significant changes in the intracellular inositoltriphosphate (IP3). Diacylglycerol generation was also stimulated by GM-CSF treatment. GM- CSF increased the membrane PK-C activity by 10-fold of the control, whereas no measurable change in cyclic nucleotides was observed. These data indicated that phosphoinositol turnover and the activation of PK-C were included in the GM-CSF signal transducing pathway in HL-60 cell. Phosphoinositol response leading to PK-C activation may act as a trigger signal of cell differentiation by GM-CSF.


Sign in / Sign up

Export Citation Format

Share Document