scholarly journals Roles of the Transcription Factors Sfl2 and Efg1 in White-Opaque Switching in a/α Strains ofCandida albicans

mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yang-Nim Park ◽  
Kayla Conway ◽  
Thomas P. Conway ◽  
Karla J. Daniels ◽  
David R. Soll

ABSTRACTCandida albicansremains the most pervasive fungal pathogen colonizing humans. The majority of isolates from hosts are heterozygous at the mating type locus (MTLa/α), and a third of these have recently been shown to be capable of switching to the opaque phenotype. Here we have investigated the roles of two transcription factors (TFs) Sfl2 and Efg1, in repressing switching ina/α strains. Deleting either gene results in the capacity ofa/α cells to switch to opaque en masse under facilitating environmental conditions, which includeN-acetylglucosamine (GlcNAc) as the carbon source, physiological temperature (37°C), and high CO2(5%). These conditions are similar to those in the host. Our results further reveal that while glucose is a repressor ofsfl2Δ andefg1Δ switching, GlcNAc is an inducer. Finally, we show that when GlcNAc is the carbon source, and the temperature is low (25°C), theefg1Δ mutants, but not thesfl2Δ mutants, form a tiny, elongate cell, which differentiates into an opaque cell when transferred to conditions optimal fora/α switching. These results demonstrate that at least two TFs, Sfl2 and Efg1, repress switching ina/α cells and thata/α strains with either ansfl2Δ orefg1Δ mutation can switch en masse but only under physiological conditions. The role of opaquea/α cells in commensalism and pathogenesis must, therefore, be investigated.IMPORTANCEMore than 95% ofCandida albicansstrains isolated from humans areMTLa/α, and approximately a third of these can undergo the white-to-opaque transition. Therefore, besides being a requirement forMTL-homozygous strains to mate, the opaque phenotype very likely plays a role in the commensalism and pathogenesis of nonmating,a/α populations colonizing humans.

2015 ◽  
Vol 14 (12) ◽  
pp. 1165-1172 ◽  
Author(s):  
Frans M. Klis ◽  
Stanley Brul

ABSTRACTThe wall proteome and the secretome of the fungal pathogenCandida albicanshelp it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genesENG1,CHT3, andSCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate thatC. albicansactively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.


mBio ◽  
2021 ◽  
Author(s):  
Thomas P. Conway ◽  
Kayla Conway ◽  
Frank A. Boksa ◽  
Claude Pujol ◽  
Deborah Wessels ◽  
...  

Candida albicans , the most pervasive fungal pathogen colonizing humans, undergoes a phenotypic transition between a white and opaque phenotype. The unique opaque phenotype is necessary for mating and colonization of the lower gastrointestinal tract.


2005 ◽  
Vol 73 (11) ◽  
pp. 7366-7374 ◽  
Author(s):  
Ashraf S. Ibrahim ◽  
B. B. Magee ◽  
D. C. Sheppard ◽  
Molly Yang ◽  
Sarah Kauffman ◽  
...  

ABSTRACT Candida albicans is the most common fungal pathogen of humans. The recent discovery of sexuality in this organism has led to the demonstration of a mating type locus which is usually heterozygous, although some isolates are homozygous. Tetraploids can be formed between homozygotes of the opposite mating type. However, the role of the mating process and tetraploid formation in virulence has not been investigated. We describe here experiments using a murine model of disseminated candidiasis which demonstrate that in three strains, including CAI-4, the most commonly used strain background, tetraploids are less virulent than diploids and can undergo changes in ploidy during infection. In contrast to reports with other strains, we find that MTL homozygotes are almost as virulent as the heterozygotes. These results show that the level of ploidy in Candida albicans can affect virulence, but the mating type configuration does not necessarily do so.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Slavena Vylkova ◽  
Aaron J. Carman ◽  
Heather A. Danhof ◽  
John R. Collette ◽  
Huaijin Zhou ◽  
...  

ABSTRACTpH homeostasis is critical for all organisms; in the fungal pathogenCandida albicans, pH adaptation is critical for virulence in distinct host niches. We demonstrate that beyond adaptation,C. albicansactively neutralizes the environment from either acidic or alkaline pHs. Under acidic conditions, this species can raise the pH from 4 to >7 in less than 12 h, resulting in autoinduction of the yeast-hyphal transition, a critical virulence trait. Extracellular alkalinization has been reported to occur in several fungal species, but under the specific conditions that we describe, the phenomenon is more rapid than previously observed. Alkalinization is linked to carbon deprivation, as it occurs in glucose-poor media and requires exogenous amino acids. These conditions are similar to those predicted to exist inside phagocytic cells, and we find a strong correlation between the use of amino acids as a cellular carbon source and the degree of alkalinization. Genetic and genomic approaches indicate an emphasis on amino acid uptake and catabolism in alkalinizing cells. Mutations in four genes,STP2, a transcription factor regulating amino acid permeases,ACH1(acetyl-coenzyme A [acetyl-CoA] hydrolase),DUR1,2(urea amidolyase), andATO5, a putative ammonia transporter, abolish or delay neutralization. The pH changes are the result of the extrusion of ammonia, as observed in other fungi. We propose that nutrient-deprivedC. albicanscells catabolize amino acids as a carbon source, excreting the amino nitrogen as ammonia to raise environmental pH and stimulate morphogenesis, thus directly contributing to pathogenesis.IMPORTANCECandida albicansis the most important fungal pathogen of humans, causing disease at multiple body sites. The ability to switch between multiple morphologies, including a rounded yeast cell and an elongated hyphal cell, is a key virulence trait in this species, as this reversible switch is thought to promote dissemination and tissue invasion in the host. We report here thatC. albicanscan actively alter the pH of its environment and induce its switch to the hyphal form. The change in pH is caused by the release of ammonia from the cells produced during the breakdown of amino acids. This phenomenon is unprecedented in a human pathogen and may substantially impact host physiology by linking morphogenesis, pH adaptation, carbon metabolism, and interactions with host cells, all of which are critical for the ability ofC. albicansto cause disease.


2012 ◽  
Vol 11 (10) ◽  
pp. 1219-1225 ◽  
Author(s):  
Allia K. Lindsay ◽  
Aurélie Deveau ◽  
Amy E. Piispanen ◽  
Deborah A. Hogan

ABSTRACTCandida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced byC. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol did not induce the hypha-to-yeast transition in mutants lacking the Tup1 or Nrg1 transcriptional repressors in embedded conditions. Although body temperature is not required for embedded hyphal growth, we found that the effect of farnesol on the hypha-to-yeast transition varies inversely with temperature. Our model of Cyr1 activity being required for filamentation is also supported by our liquid assay data, which show increased yeast formation when preformed filaments are treated with farnesol. Together, these data suggest that farnesol can modulate morphology in preformed hyphal cells and that the repression of hyphal growth maintenance likely occurs through the inhibition of cAMP signaling.


2016 ◽  
Vol 80 (3) ◽  
pp. 565-595 ◽  
Author(s):  
David R. Soll ◽  
Karla J. Daniels

SUMMARYCandida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formedin vitrovary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of theMTLlocus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal.


2013 ◽  
Vol 12 (10) ◽  
pp. 1316-1325 ◽  
Author(s):  
Diane O. Inglis ◽  
Gavin Sherlock

ABSTRACTCandida albicansis an opportunistic fungal pathogen that can cause disseminated infection in patients with indwelling catheters or other implanted medical devices. A common resident of the human microbiome,C. albicansresponds to environmental signals, such as cell contact with catheter materials and exposure to serum or CO2, by triggering the expression of a variety of traits, some of which are known to contribute to its pathogenic lifestyle. Such traits include adhesion, biofilm formation, filamentation, white-to-opaque (W-O) switching, and two recently described phenotypes, finger and tentacle formation. Under distinct sets of environmental conditions and in specific cell types (mating type-likea[MTLa]/alpha cells, MTL homozygotes, or daughter cells),C. albicansutilizes (or reutilizes) a single signal transduction pathway—the Ras pathway—to affect these phenotypes. Ras1, Cyr1, Tpk2, and Pde2, the proteins of the Ras signaling pathway, are the only nontranscriptional regulatory proteins that are known to be essential for regulating all of these processes. How doesC. albicansutilize this one pathway to regulate all of these phenotypes? The regulation of distinct and yet related processes by a single, evolutionarily conserved pathway is accomplished through the use of downstream transcription factors that are active under specific environmental conditions and in different cell types. In this minireview, we discuss the role of Ras signaling pathway components and Ras pathway-regulated transcription factors as well as the transcriptional regulatory networks that fine-tune gene expression in diverse biological contexts to generate specific phenotypes that impact the virulence ofC. albicans.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Tanaporn Wangsanut ◽  
Joshua M. Tobin ◽  
Ronda J. Rolfes

ABSTRACTGrf10, a homeodomain-containing transcription factor, regulates adenylate and one-carbon metabolism and morphogenesis in the human fungal pathogenCandida albicans. Here, we identified functional domains and key residues involved in transcription factor activity using one-hybrid and mutational analyses. We localized activation domains to the C-terminal half of the Grf10 protein by one-hybrid analysis and identified motifs using bioinformatic analyses; one of the characterized activation domains (AD1) responded to temperature. The LexA-Grf10 fusion protein activated thelexAop-HIS1reporter in an adenine-dependent fashion, and this activation was independent of Bas1, showing that the adenine limitation signal is transmitted directly to Grf10. Overexpression of LexA-Grf10 led to filamentation, and this required a functioning homeodomain, consistent with Grf10 controlling the expression of key filamentation genes; filamentation induced by LexA-Grf10 overexpression was independent of adenine levels and Bas1. Alanine substitutions were made within the conserved interaction regions (IR) of LexA-Grf10 and Grf10 to investigate roles in transcription. In LexA-Grf10, the D302A mutation activated transcription constitutively, and the E305A mutation was regulated by adenine. When these mutations were introduced into the native gene locus, the D302A mutation was unable to complement the ADE phenotype and did not promote filamentation under hypha-inducing conditions; the E305A mutant behaved as the native gene with respect to the ADE phenotype and was partially defective in inducing hyphae. These results demonstrate allele-specific responses with respect to the different phenotypes, consistent with perturbations in the ability of Grf10 to interact with multiple partner proteins.IMPORTANCEMetabolic adaptation and morphogenesis are essential forCandida albicans, a major human fungal pathogen, to survive and infect diverse body sites in the mammalian host.C. albicansutilizes transcription factors to tightly control the transcription of metabolic genes and morphogenesis genes. Grf10, a critical homeodomain transcription factor, controls purine and one-carbon metabolism in response to adenine limitation, and Grf10 is necessary for the yeast-to-hypha morphological switching, a known virulence factor. Here, we carried out one-hybrid and mutational analyses to identify functional domains of Grf10. Our results show that Grf10 separately regulates metabolic and morphogenesis genes, and it contains a conserved protein domain for protein partner interaction, allowing Grf10 to control the transcription of multiple distinct pathways. Our findings contribute significantly to understanding the role and mechanism of transcription factors that control multiple pathogenic traits inC. albicans.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Peter R. Flanagan ◽  
Ning-Ning Liu ◽  
Darren J. Fitzpatrick ◽  
Karsten Hokamp ◽  
Julia R. Köhler ◽  
...  

ABSTRACT Candida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in eukaryotic cells and in the fungal pathogen Candida albicans regulates morphogenesis and nitrogen acquisition. Gtr1 encodes a highly conserved GTPase that in Saccharomyces cerevisiae regulates nitrogen sensing and TORC1 activation. Here, we characterize the role of C. albicans GTR1 in TORC1 activation and compare it with the previously characterized GTPase Rhb1. A homozygous gtr1/gtr1 mutant exhibited impaired TORC1-mediated phosphorylation of ribosomal protein S6 and increased susceptibility to rapamycin. Overexpression of GTR1 impaired nitrogen starvation-induced filamentous growth, MEP2 expression, and growth in bovine serum albumin as the sole nitrogen source. Both GTR1 and RHB1 were shown to regulate genes involved in ribosome biogenesis, amino acid biosynthesis, and expression of biofilm growth-induced genes. The rhb1/rhb1 mutant exhibited a different pattern of expression of Sko1-regulated genes and increased susceptibility to Congo red and calcofluor white. The homozygous gtr1/gtr1 mutant exhibited enhanced flocculation phenotypes and, similar to the rhb1/rhb1 mutant, exhibited enhanced biofilm formation on plastic surfaces. In summary, Gtr1 and Rhb1 link nutrient sensing and biofilm formation and this connectivity may have evolved to enhance the competitiveness of C. albicans in niches where there is intense competition with other microbes for space and nutrients. IMPORTANCE Candida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients.


2010 ◽  
Vol 10 (2) ◽  
pp. 272-275 ◽  
Author(s):  
Silvia Argimón ◽  
Saranna Fanning ◽  
Jill R. Blankenship ◽  
Aaron P. Mitchell

ABSTRACT Human β-defensins 2 and 3 are small cationic peptides with antimicrobial activity against the fungal pathogen Candida albicans . We found that hog1 and pbs2 mutants were hypersensitive to treatment with these peptides, pointing to a role of the high-osmolarity glycerol (HOG) pathway in the response to defensin-induced cell injury.


Sign in / Sign up

Export Citation Format

Share Document