DELINEATING CONTRIBUTING AREAS TO KARST SPRINGS USING NEXRAD PRECIPITATION ESTIMATES AND CROSS-CORRELATION ANALYSIS

2017 ◽  
Author(s):  
Trevor Budge ◽  
2003 ◽  
Vol 25 (3) ◽  
pp. 274-279
Author(s):  
Vũ Thanh Tâm

Some applications of cross-correlation analysis in meteohydrological hydrogeological study


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2010 ◽  
Vol 09 (02) ◽  
pp. 203-217 ◽  
Author(s):  
XIAOJUN ZHAO ◽  
PENGJIAN SHANG ◽  
YULEI PANG

This paper reports the statistics of extreme values and positions of extreme events in Chinese stock markets. An extreme event is defined as the event exceeding a certain threshold of normalized logarithmic return. Extreme values follow a piecewise function or a power law distribution determined by the threshold due to a crossover. Extreme positions are studied by return intervals of extreme events, and it is found that return intervals yield a stretched exponential function. According to correlation analysis, extreme values and return intervals are weakly correlated and the correlation decreases with increasing threshold. No long-term cross-correlation exists by using the detrended cross-correlation analysis (DCCA) method. We successfully introduce a modification specific to the correlation and derive the joint cumulative distribution of extreme values and return intervals at 95% confidence level.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1540-1541
Author(s):  
Tristan O'Neill ◽  
B. C. Regan ◽  
Matthew Mecklenburg

Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550044 ◽  
Author(s):  
CAN-ZHONG YAO ◽  
JI-NAN LIN ◽  
XU-ZHOU ZHENG

Based on cross-correlation algorithm, we analyze the correlation property of warehouse-out quantity of different warehouses, respectively, and different products of each warehouse. Our study identifies that significant cross-correlation relationship for warehouse-out quantity exists among different warehouses and different products of a warehouse. Further, we take multifractal detrended cross-correlation analysis for warehouse-out quantity among different warehouses and different products of a warehouse. The results show that for the warehouse-out behaviors of total amount, different warehouses and different products of a warehouse significantly follow multifractal property. Specifically for each warehouse, the coupling relationships of rebar and wire rod reveal long-term memory characteristics, no matter for large fluctuation or small one. The cross-correlation effect on long-range memory property among warehouses probably has less to do with product types,and the long-term memory of YZ warehouse is greater than others especially in total amount and wire rod product. Finally, we shuffle and surrogate data to explore the source of multifractal cross-correlation property in logistics system. Taking the total amount of warehouse-out quantity as example, we confirm that the fat-tail distribution of warehouse-out quantity sequences is the main factor for multifractal cross-correlation. Through comparing the performance of the multifractal detrended cross-correlation analysis (MF-DCCA), centered multifractal detrending moving average cross-correlation analysis (MF-X-DMA) algorithms, the forward and backward MF-X-DMA algorithms, we find that the forward and backward MF-X-DMA algorithms exhibit a better performance than the other ones.


Sign in / Sign up

Export Citation Format

Share Document