THE UTILITY OF 2D ELASTIC SCREW AND EDGE DISLOCATIONS FOR MODELING CRUSTAL DEFORMATION ASSOCIATED WITH SHEAR ZONES

2017 ◽  
Author(s):  
Phillip K. Mcfarland ◽  
◽  
Richard A. Bennett
1994 ◽  
Vol 31 (8) ◽  
pp. 1287-1300 ◽  
Author(s):  
Simon Hanmer ◽  
Randy Parrish ◽  
Michael Williams ◽  
Chris Kopf

The geophysically defined Snowbird tectonic zone is manifested in northernmost Saskatchewan as a deep-crustal, multistage mylonitic structure, the East Athabasca mylonite triangle. The triangle, located at the northeastern apex of a stiff, crustal-scale "lozenge," is composed of mid-Archean annealed mylonites and late Archean ribbon mylonites, formed during two granulite facies events (850–1000 °C, 1.0 GPa). The flow pattern in the mylonites is geometrically and kinematically complex, and corresponds to that expected adjacent to the apex of a stiff elliptical volume subjected to subhorizontal regional extension parallel to its principal axis. The late Archean mylonites are divided into an upper structural deck, entirely occupied by a dip-slip shear zone, and an underlying lower deck. The latter is divided into two upright conjugate strike-slip shear zones, separated by a low-strain septum, which deformed by progressive coaxial flow. The flow pattern in the mid-Archean mylonites is compatible with that of the late Archean mylonites, and suggests that the crustal-scale lozenge influenced deformation since the mid-Archean. In the interval ca. 2.62–2.60 Ga, deformation in the upper and lower decks evolved from a granulite facies pervasive regime to a more localized amphibolite facies regime. With further cooling, deformation was localized within very narrow greenschist mylonitic faults at the lateral limits of the lower deck. By the late Archean, the East Athabasca mylonite triangle was part of a deep-crustal, intracontinental shear zone. This segment of the Snowbird tectonic zone was not the site of an Early Proterozoic suture or orogen.


1991 ◽  
Vol 128 (6) ◽  
pp. 667-671 ◽  
Author(s):  
John G. Spray ◽  
Gregory R. Dunning

AbstractHigh precision U/Pb data obtained from zircons extracted from plagiogranite within the gabbro unit of the Shetland Islands oceanic fragment of northeast Scotland yield an age of 492 ± 3 Ma. Field relations indicate that the plagiogranites were generated by the partial melting of amphibolitized gabbros within high-temperature shear zones formed due to crustal deformation and fluid infiltration occurring in proximity to a spreading centre. The U/Pb data therefore constrain the crystallization age of the Shetland complex. This age is similar to U/Pb ages obtained from the Leka (497±2 Ma), Karmoy (493+7-4 Ma) and Gulfjellet (489±3 Ma) oceanic fragments of the Norwegian Caledonides, and the Pipestone Pond (4943-2 Ma) and Betts Cove (4893-2 Ma) oceanic fragments of the Canadian Appalachians.


2021 ◽  
Author(s):  
Etienne Legeay ◽  
Geoffroy Mohn ◽  
Jean-Claude Ringenbach ◽  
William Vetel

<p>Before Break-Up, the opening of the South China Sea Passive Margin (SCS) was characterized by a wide rift mode during Cenozoic rifting. Such wide extensional margin (>600 km wide) is controlled by a set of hyper-extended sub-basins separated by basement highs.</p><p>These basins infill recorded a polyphased extensional deformation hence resulting in complex 3D sedimentary evolution. Based on a recent industrial 3D seismic reflection survey along the Sabah area (southern margin of the SCS), this contribution aims to investigate the detailed 3D geometries of extensional structures as well as their control on the overlying successive sedimentary sequences and relation to crustal deformation.</p><p>We mapped and analyzed several crustal-scale rolling hinge structures controlled by a series of low-angle normal faults. Deeper crustal levels are likely exhumed along the core of these rolling hinge structures, separated by extensional allochthones blocs of upper continental crust. Our structural analysis enables us to identify three main extensional phases corresponding to distinct sedimentary packages: (1) a synrift sequence 1 controlled by small offset normal faults formed during incipient rifting; (2) an intermediate synrift sequence 2 recording the development of extensional detachment faults. (3) a thick syn-rift sequence 3 recording a continuation of extension along the detachment faults resulting in the dismembering of the syn-<br>rift sequence 2. Intra-basement seismic reflectors dipping towards the north-west are observed, onto which extensional structures often seem to root. Some of these reflectors are interpreted as interleaved thrust sheets from a dismantled accretionary wedge of the former Mesozoic active margin (Yenshanian magmatic Arc).</p><p>Our results provide new key observations on the 3D mechanisms of detachment faulting and its control on sedimentary evolution as well as coeval crustal deformation. 3D approach throw some light on the detailed geometries of a metamorphic core-complex in relation with crustal boudinage, shear zones and lower/middle crust exhumation below the syn- rift sediments. These geometries can be compared to those described in the Basin and Range province or the Aegean Sea. Consequently, our results have implications for our understanding of rift and breakup mechanisms of marginal basins as a whole.</p>


2009 ◽  
Vol 34 (5) ◽  
pp. 674-685 ◽  
Author(s):  
Te-Hsien Lin ◽  
Ching-Hua Lo ◽  
Sun-Lin Chung ◽  
Fang-Jui Hsu ◽  
Meng-Wan Yeh ◽  
...  

2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


2016 ◽  
Author(s):  
Simin Gao ◽  
◽  
Margarete Jadamec

Sign in / Sign up

Export Citation Format

Share Document