STRUCTURAL EVOLUTION OF EXCEPTIONALLY IRON-DEFICIENT HEMATITE NANOCRYSTALS AS OBSERVED BY IN SITU SYNCHROTRON X-RAY DIFFRACTION

2019 ◽  
Author(s):  
Si Athena Chen ◽  
◽  
Peter Heaney ◽  
Jeffrey E. Post ◽  
Peter J. Eng ◽  
...  
2016 ◽  
Vol 4 (20) ◽  
pp. 7718-7726 ◽  
Author(s):  
Dorsasadat Safanama ◽  
Neeraj Sharma ◽  
Rayavarapu Prasada Rao ◽  
Helen E. A. Brand ◽  
Stefan Adams

In situ synchrotron X-ray diffraction study of the synthesis of solid-electrolyte Li1+xAlxGe2−x(PO4)3 (LAGP) from the precursor glass reveals that an initially crystallized dopant poor phase transforms into the Al-doped LAGP at 800 °C.


2020 ◽  
Author(s):  
Bikash Garai ◽  
Volodymyr Bon ◽  
Francesco Walenszus ◽  
Azat Khadiev ◽  
Dmitri Novikov ◽  
...  

Variation in the metal centres of M-M paddle-wheel SBU results in the formation of isostructural DUT-49(M) frameworks. However, the porosity of the framework was found to be different for each of the structures. While a high and moderate porosity was obtained for DUT-49(Cu) and DUT-49(Ni), respectively, other members of the series [DUT-49(M); M= Mn, Fe, Co, Zn, Cd] show very low porosity and shapes of the adsorption isotherms which is not expected for op phases of these MOFs. Investigation on those MOFs revealed that those frameworks undergo structural collapse during the solvent removal at the activation step. Thus, herein, we aimed to study the detailed structural transformations that are possibly occurring during the removal of the subcritical fluid from the framework.


Soft Matter ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Pinzhang Chen ◽  
Jingyun Zhao ◽  
Yuanfei Lin ◽  
Jiarui Chang ◽  
Lingpu Meng ◽  
...  

The structural evolution of NR during stretching at −40 °C and in the strain–temperature space.


1997 ◽  
Vol 12 (4) ◽  
pp. 1131-1140 ◽  
Author(s):  
Kui Yao ◽  
Weiguang Zhu ◽  
Liangying Zhang ◽  
Xi Yao

Several ABO3perovskite ferroelectric crystals, PbTiO3, Pb(Zr, Ti)O3, and BaTiO3have beenin situgrown from amorphous gels with glass elements, and the structural evolution has been systematically investigated using x-ray diffraction (XRD), infrared spectra (IR), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and dielectric measurements. It is found that in the Si-contained glass-ceramic systems, Si and B glass elements are incorporated into the crystalline structures, resulting in the variation of the crystallization process, change of lattice constant, and dielectric properties. Some metastable phases expressed by a general formula AxByGzOw(A = Pb and Ba; B = Zr and Ti; G for glass elements, especially for Si) have been observed and discussed.


2017 ◽  
Vol 29 (5) ◽  
pp. 2364-2373 ◽  
Author(s):  
Qing Zhang ◽  
Alexander B. Brady ◽  
Christopher J. Pelliccione ◽  
David C. Bock ◽  
Andrea M. Bruck ◽  
...  

2010 ◽  
Vol 25 (12) ◽  
pp. 2271-2277 ◽  
Author(s):  
N. Zheng ◽  
G. Wang ◽  
L.C. Zhang ◽  
M. Calin ◽  
M. Stoica ◽  
...  

The structural evolution of the Ti40Zr10Cu34Pd14Sn2 bulk metallic glass (BMG) upon was investigated by means of in situ high-energy x-ray diffraction. The position, width, and intensity of the first peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width, and intensity values show a nearly linear increase with the increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and Tg (the glass transition temperature). The changes in free volume and the coefficient of volume thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation releasing excess free volume arrested during rapid quenching of the BMG. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals.


CrystEngComm ◽  
2016 ◽  
Vol 18 (39) ◽  
pp. 7463-7470 ◽  
Author(s):  
Kyu-Young Park ◽  
Hyungsub Kim ◽  
Seongsu Lee ◽  
Jongsoon Kim ◽  
Jihyun Hong ◽  
...  

In this paper, the structural evolution of Li(Mn1/3Fe1/3Co1/3)PO4, which is a promising multi-component olivine cathode materials, is investigated using combined in situ high-temperature X-ray diffraction and flux neutron diffraction analyses at various states of charge.


Polymer ◽  
2019 ◽  
Vol 185 ◽  
pp. 121926 ◽  
Author(s):  
Shuquan Sun ◽  
Fengyan Hu ◽  
Thomas P. Russell ◽  
Dong Wang ◽  
Liqun Zhang

2007 ◽  
Author(s):  
Masamitu Takahasi ◽  
Toshiyuki Kaizu ◽  
Jun’ichiro Mizuki

2020 ◽  
Vol 92 (5) ◽  
pp. 733-749 ◽  
Author(s):  
Sung-Fu Hung

AbstractElectrocatalysis offers an alternative solution for the energy crisis because it lowers the activation energy of reaction to produce economic fuels more accessible. Non-noble electrocatalysts have shown their capabilities to practical catalytic applications as compared to noble ones, whose scarcity and high price limit the development. However, the puzzling catalytic processes in non-noble electrocatalysts hinder their advancement. In-situ techniques allow us to unveil the mystery of electrocatalysis and boost the catalytic performances. Recently, various in-situ X-ray techniques have been rapidly developed, so that the whole picture of electrocatalysis becomes clear and explicit. In this review, the in-situ X-ray techniques exploring the structural evolution and chemical-state variation during electrocatalysis are summarized for mainly oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). These approaches include X-ray Absorption Spectroscopy (XAS), X-ray diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The information seized from these in-situ X-ray techniques can effectively decipher the electrocatalysis and thus provide promising strategies for advancing the electrocatalysts. It is expected that this review could be conducive to understanding these in-situ X-ray approaches and, accordingly, the catalytic mechanism to better the electrocatalysis.


Sign in / Sign up

Export Citation Format

Share Document