scholarly journals Supplemental Material: The influence of off-fault deformation zones on the near-fault distribution of coseismic landslides

Author(s):  
Colin K. Bloom ◽  
et al.

Off-fault deformation (OFD) data, additional methodology, and analysis.<br>

2021 ◽  
Author(s):  
Colin K. Bloom ◽  
et al.

Off-fault deformation (OFD) data, additional methodology, and analysis.<br>


Geology ◽  
2021 ◽  
Author(s):  
Colin K. Bloom ◽  
Andrew Howell ◽  
Timothy Stahl ◽  
Chris Massey ◽  
Corinne Singeisen

Coseismic landslides are observed in higher concentrations around surface-rupturing faults. This observation has been attributed to a combination of stronger ground motions and increased rock mass damage closer to faults. Past work has shown it is difficult to separate the influences of rock mass damage from strong ground motions on landslide occurrence. We measured coseismic off-fault deformation (OFD) zone widths (treating them as a proxy for areas of more intense rock mass damage) using high-resolution, three-dimensional surface displacements from the 2016 Mw 7.8 Kaikōura earthquake in New Zealand. OFD zones vary in width from ~50 m to 1500 m over the ~180 km length of ruptures analyzed. Using landslide densities from a database of 29,557 Kaikōura landslides, we demonstrate that our OFD zone captures a higher density of coseismic landslide incidence than generic “distance to fault rupture” within ~650 m of surface fault ruptures. This result suggests that the effects of rock mass damage within OFD zones (including ground motions from trapped and amplified seismic waves) may contribute to near-fault coseismic landslide occurrence in addition to the influence of regional ground motions, which attenuate with distance from the fault. The OFD zone represents a new path toward understanding, and planning for, the distribution of coseismic landslides around surface fault ruptures. Inclusion of estimates of fault zone width may improve landslide susceptibility models and decrease landslide risk.


2017 ◽  
Author(s):  
Sarah A. Harbert ◽  
◽  
Alison R. Duvall ◽  
Gregory E. Tucker

2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


2021 ◽  
Author(s):  
Deniz Ertuncay ◽  
Giovanni Costa

AbstractNear-fault ground motions may contain impulse behavior on velocity records. To calculate the probability of occurrence of the impulsive signals, a large dataset is collected from various national data providers and strong motion databases. The dataset has a large number of parameters which carry information on the earthquake physics, ruptured faults, ground motion parameters, distance between the station and several parts of the ruptured fault. Relation between the parameters and impulsive signals is calculated. It is found that fault type, moment magnitude, distance and azimuth between a site of interest and the surface projection of the ruptured fault are correlated with the impulsiveness of the signals. Separate models are created for strike-slip faults and non-strike-slip faults by using multivariate naïve Bayes classifier method. Naïve Bayes classifier allows us to have the probability of observing impulsive signals. The models have comparable accuracy rates, and they are more consistent on different fault types with respect to previous studies.


Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 803-817
Author(s):  
Sayed Mahmoud ◽  
Ali Alqarni ◽  
Joseph Saliba ◽  
Amal H. Ibrahim ◽  
Magdy genidy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document