Alpha-amino acid ester hydrolases: Properties and applications

2013 ◽  
Vol 49 (8) ◽  
pp. 672-694 ◽  
Author(s):  
V. B. Kurochkina ◽  
A. V. Sklyarenko ◽  
O. V. Berezina ◽  
S. V. Yarotskii
Acta Naturae ◽  
2013 ◽  
Vol 5 (4) ◽  
pp. 62-70 ◽  
Author(s):  
S. A. Zarubina ◽  
I. V. Uporov ◽  
E. A. Fedorchuk ◽  
V. V. Fedorchuk ◽  
A. V. Sklyarenko ◽  
...  

Alpha-amino acid ester hydrolase (EC 3.1.1.43, AEH) is a promising biocatalyst for the production of semi-synthetic -lactam antibiotics, penicillins and cephalosporins. The AEH gene from Xanthomonas rubrilineans (XrAEH) was recently cloned in this laboratory. The three-dimensional structure of XrAEH was simulated using the homology modeling method for rational design experiments. The analysis of the active site was performed, and its structure was specified. The key amino acid residues in the active site - the catalytic triad (Ser175, His341 and Asp308), oxyanion hole (Tyr83 and Tyr176), and carboxylate cluster (carboxylate groups of Asp209, Glu310 and Asp311) - were identified. It was shown that the optimal configuration of residues in the active site occurs with a negative net charge -1 in the carboxylate cluster. Docking of different substrates in the AEH active site was carried out, which allowed us to obtain structures of XrAEH complexes with the ampicillin, amoxicillin, cephalexin, D-phenylglycine, and 4-hydroxy-D-phenylglycine methyl ester. Modeling of XrAEH enzyme complexes with various substrates was used to show the structures for whose synthesis this enzyme will show the highest efficiency.


2020 ◽  
Vol 27 ◽  
Author(s):  
Santosh Y. Khatavi ◽  
K. Kantharaju

Background: Agro-waste derived solvent media act as a greener process for the peptide bond formation using Nα - Fmoc-amino acid chloride and amino acid ester salt with in situ neutralization and coupling under biphasic condition. The Fmoc-amino acid chlorides are prepared by the reported procedure of freshly distilled SOCl2 with dry CH2Cl2. The protocol found many added advantages such as neutralization of amino acid ester salt and not required additional base for the neutralization, and directly coupling take place with Fmoc-amino acid chloride gave final product dipeptide ester in good to excellent yields. The protocol occurs with complete stereo chemical integrity of the configuration of substrates. Here, we revisited Schotten-Baumann condition, instead of using inorganic base. Objective: To develop green protocol for the synthesis of peptide bond using Fmoc-amino acid chloride with amino acid esters salt. Methods: The final product isolated is analyzed in several spectroscopic and analytical techniques such as FT-IR, 1H-, 13CNMR, Mass spectrometry and RP-HPLC to check stereo integrity and purity of the product. Conclusion: The present method developed greener using natural agro-waste (lemon fruit shell ash) derived solvent medium for the reaction and not required chemical entity.


Sign in / Sign up

Export Citation Format

Share Document