Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species

2008 ◽  
Vol 42 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Jin Chul Kim ◽  
Seo Hyun Choi ◽  
Jeong Ki Kim ◽  
Sang Yong Kim ◽  
Hye Jin Kim ◽  
...  
Author(s):  
Tae In Kim ◽  
Eun-Bin Kwon ◽  
You-Chang Oh ◽  
Younghoon Go ◽  
Jang-Gi Choi

Herpes simplex virus type 1 (HSV-1) is ubiquitous in many populations despite the use of acyclovir or related nucleoside analogs for treating infection. Drug resistance impairs the treatment of HSV-infected individuals who have immune deficits, underscoring the need for new safe and effective antiviral agents. Mori ramulus (the young twig of Morus alba L.) has long been used to treat diseases in Korea, Japan, and China. Recent studies have reported multiple pharmacological activities of Mori ramulus and its constituent morusin, but their effects on HSV-1 remain unknown. Here, we found that treatment with Mori ramulus ethanol extract (MRE) significantly reduced the replication of fluorescently labeled HSV-1 in Vero cells and inhibited the expression of HSV-1 envelope glycoprotein D (gD) and tegument protein VP16. MRE, furthermore, blocked HSV-1-induced production of reactive oxygen species (ROS), and this mediated the inhibition of viral replication. We identified morusin as the active antiviral component of MRE and found that morusin post-treatment was sufficient to inhibit viral gD and VP16 in addition to HSV-1-induced ROS production. Therefore, the inhibition of HSV-1-induced ROS may explain the antiviral activity of MRE against HSV-1. MRE or its component morusin may be potentially developed for anti-HSV-1 agents.


2011 ◽  
Vol 24 (1) ◽  
pp. 11-26 ◽  
Author(s):  
Alexandre Iannello ◽  
Olfa Debbeche ◽  
Raoudha El Arabi ◽  
Suzanne Samarani ◽  
David Hamel ◽  
...  

2006 ◽  
Vol 80 (14) ◽  
pp. 6810-6821 ◽  
Author(s):  
Christine M. Sanfilippo ◽  
John A. Blaho

ABSTRACT Apoptosis is a highly regulated programmed cell death process which is activated during normal development and by various stimuli, such as viral infection, which disturb cellular metabolism and physiology. That herpes simplex virus type 1 (HSV-1) induces apoptosis but then prevents its killing of infected cells is well-established. However, little is known about the viral factor/event which triggers the apoptotic process. We previously reported that infections with either (i) a temperature-sensitive virus at its nonpermissive temperature which does not inject viral DNA into nuclei or (ii) various UV-inactivated wild-type viruses do not result in the induction of apoptosis (C. M. Sanfilippo, F. N. W. Chirimuuta, and J. A. Blaho, J. Virol. 78:224-239, 2004). This indicates that virus receptor binding/attachment to cells, membrane fusion, virion disassembly/tegument dispersal, virion RNAs, and capsid translocation to nuclei are not responsible for induction and implicates viral immediate-early (IE) gene expression in the process. Here, we systematically evaluated the contribution of each IE gene to the stimulation of apoptosis. Using a series of viruses individually deleted for α27, α4, and α22, we determined that these genes are not required for apoptosis induction but rather that their products play roles in its prevention, likely through regulatory effects. Sole expression of α0 acted as an “apoptoxin” that was necessary and sufficient to trigger the cell death cascade. Importantly, results using a recombinant virus which contains a stop codon in α0 showed that it was not the ICP0 protein which acted as the apoptotic inducer. Based on these findings, we propose that α0 gene expression acts as an initial inducer of apoptosis during HSV-1 infection. This represents the first description of apoptosis induction in infected cells triggered as a result of expression of a single viral gene. Expression of apoptotic viral genes is a unique mechanism through which human pathogens may modulate interactions with their host cells.


2001 ◽  
Vol 75 (6) ◽  
pp. 2710-2728 ◽  
Author(s):  
George Zachos ◽  
Margy Koffa ◽  
Chris M. Preston ◽  
J. Barklie Clements ◽  
Joe Conner

ABSTRACT Wild-type (wt) herpes simplex virus type 1 (HSV-1) suppresses cell death. We investigated the apoptotic pathways triggered during infection with mutant viruses tsk and 27lacZ (which lack functional ICP4 and ICP27 viral proteins, respectively) and examined the mechanisms used by wt HSV-1 to protect against programmed cell death induced by the DNA-damaging compound cisplatin. In our studies, we used BHK and HeLa cells, with similar results. We suggest that a decrease in the levels of Bcl-2 protein is a key event during apoptosis induced by the mutant viruses and that Bcl-2 levels are targeted by (i) a decrease of bcl-2 RNA, (ii) caspase-related proteolysis, and (iii) p38 mitogen-activated protein kinase (p38MAPK)-dependent destabilization of Bcl-2 protein. We show that wt HSV-1, but not the mutant viruses, maintains bcl-2 RNA and protein levels during infection and protects from the cisplatin-induced decrease in bcl-2 RNA; our data suggest that both ICP27 and ICP4 are required for this function. Additionally, wt HSV-1 evades but does not actively block activation of caspases. Although wt HSV-1 induces p38MAPK activation during infection, it prevents p38MAPK-dependent destabilization of Bcl-2 and exploits p38MAPK stimulation to enhance transcription of specific viral gene promoters to increase viral yields.


2001 ◽  
Vol 120 (5) ◽  
pp. A136-A137
Author(s):  
K TSAMAKIDES ◽  
E PANOTOPOULOU ◽  
D DIMITROULOPOULOS ◽  
M CHRISTOPOULO ◽  
D XINOPOULOS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document