The Symmetry Principle and Nondegenerate Families of Curves on Abstract Surfaces

2021 ◽  
Vol 62 (6) ◽  
pp. 1140-1151
Author(s):  
M. V. Tryamkin
2014 ◽  
Vol 6 (1) ◽  
pp. 1032-1035 ◽  
Author(s):  
Ramzi Suleiman

The research on quasi-luminal neutrinos has sparked several experimental studies for testing the "speed of light limit" hypothesis. Until today, the overall evidence favors the "null" hypothesis, stating that there is no significant difference between the observed velocities of light and neutrinos. Despite numerous theoretical models proposed to explain the neutrinos behavior, no attempt has been undertaken to predict the experimentally produced results. This paper presents a simple novel extension of Newton's mechanics to the domain of relativistic velocities. For a typical neutrino-velocity experiment, the proposed model is utilized to derive a general expression for . Comparison of the model's prediction with results of six neutrino-velocity experiments, conducted by five collaborations, reveals that the model predicts all the reported results with striking accuracy. Because in the proposed model, the direction of the neutrino flight matters, the model's impressive success in accounting for all the tested data, indicates a complete collapse of the Lorentz symmetry principle in situation involving quasi-luminal particles, moving in two opposite directions. This conclusion is support by previous findings, showing that an identical Sagnac effect to the one documented for radial motion, occurs also in linear motion.


2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
André Kretzschmar ◽  
Stephan Nebe

In order to investigate the nature of complex problem solving (CPS) within the nomological network of cognitive abilities, few studies have simultantiously considered working memory and intelligence, and results are inconsistent. The Brunswik symmetry principle was recently discussed as a possible explanation for the inconsistent findings because the operationalizations differed greatly between the studies. Following this assumption, 16 different combinations of operationalizations of working memory and fluid reasoning were examined in the present study (N = 152). Based on structural equation modeling with single-indicator latent variables (i.e., corrected for measurement error), it was found that working memory incrementally explained CPS variance above and beyond fluid reasoning in only 2 of 16 conditions. However, according to the Brunswik symmetry principle, both conditions can be interpreted as an asymmetrical (unfair) comparison, in which working memory was artificially favored over fluid reasoning. We conclude that there is little evidence that working memory plays a unique role in solving complex problems independent of fluid reasoning. Furthermore, the impact of the Brunswik symmetry principle was clearly demonstrated as the explained variance in CPS varied between 4 and 31%, depending on which operationalizations of working memory and fluid reasoning were considered. We argue that future studies investigating the interplay of cognitive abilities will benefit if the Brunswik principle is taken into account.


1957 ◽  
Vol 35 (9) ◽  
pp. 995-1003 ◽  
Author(s):  
A. G. Mungall ◽  
John Hart

The measurement of the complex dielectric constant of lossy liquids in the millimeter and centimeter wave region by a free-space technique is described. The method involves the measurement of absorption per wavelength and of reflectance at normal incidence. Families of curves are given for the relations between these two quantities and the real and imaginary parts of the complex dielectric constant. Results for ethyl and methyl alcohol at 9 and 13 mm. wavelength are compared with those obtained by waveguide techniques.


2018 ◽  
Vol 14 (05) ◽  
pp. 1375-1401 ◽  
Author(s):  
Patrick Meisner

We determine in this paper the distribution of the number of points on the covers of [Formula: see text] such that [Formula: see text] is a Galois extension and [Formula: see text] is abelian when [Formula: see text] is fixed and the genus, [Formula: see text], tends to infinity. This generalizes the work of Kurlberg and Rudnick and Bucur, David, Feigon and Lalin who considered different families of curves over [Formula: see text]. In all cases, the distribution is given by a sum of [Formula: see text] random variables.


1967 ◽  
Vol 57 (3) ◽  
pp. 515-543 ◽  
Author(s):  
Luis M. Fernandez

abstract The layers of the earth's crust act as a filter with respect to seimic energy arriving at a given station. Consequently the motion recorded at the surface depends not only on the frequency content of the source and on the response characteristics of the recording instrument, but also on the elastic parameters and thicknesses of the transmitting layers. This latter dependence is the basis for a method of investigating the structure of the crust and upper mantle. To facilitate this investigation a set of master curves for the transfer functions of the vertical and horizontal component of longitudinal waves and their ratios is presented. The calculation of these curves is in terms of a dimensionless parameter. This calculation allows one to group the curves corresponding to different crustal models into families of curves. The characteristics of these curves are discussed from the point of view of their “periodicity” in the frequency domain and of their amplitude in order to investigate the influence of the layer parameters. Considerations, either of constructive interference or of Fourier analysis of a pulse multiply reflected within the layer system, reveal that the amplitudes of the transfer curves depend on the velocity contrasts at the interfaces of the system. The “periodicity” or spacing of the peaks depends on the time lags between the first arrivals and the arrivals of the different reverberations. Closely spaced fluctuations correspond to large-time lags, and widely spaced fluctuations to short-time lags.


Sign in / Sign up

Export Citation Format

Share Document