Parental care and testosterone in males of the bank vole (Myodes glareolus): Sensitization and androgenic stimulation of paternal behavior

2013 ◽  
Vol 40 (1) ◽  
pp. 114-118 ◽  
Author(s):  
V. S. Gromov ◽  
L. V. Osadchuk
2008 ◽  
Vol 8 (5) ◽  
pp. 1164-1168 ◽  
Author(s):  
K. RIKALAINEN ◽  
A. GRAPPUTO ◽  
E. KNOTT ◽  
E. KOSKELA ◽  
T. MAPPES

2009 ◽  
Vol 59 (2) ◽  
pp. 169-187 ◽  
Author(s):  
Michal Kozakiewicz ◽  
Alicja Gryczyńska–Siemiątkowska ◽  
Hanna Panagiotopoulou ◽  
Anna Kozakiewicz ◽  
Robert Rutkowski ◽  
...  

AbstractHabitat barriers are considered to be an important factor causing the local reduction of genetic diversity by dividing a population into smaller sections and preventing gene flow between them. However, the “barrier effect” might be different in the case of different species. The effect of geographic distance and water barriers on the genetic structure of populations of two common rodent species – the yellow-necked mouse (Apodemus flavicollis) and the bank vole (Myodes glareolus) living in the area of a lake (on its islands and on two opposite shores) was investigated with the use of microsatellite fragment analysis. The two studied species are characterised by similar habitat requirements, but differ with regard to the socio-spatial structure of the population, individual mobility, capability to cross environmental barriers, and other factors. Trapping was performed for two years in spring and autumn in north-eastern Poland (21°E, 53°N). A total of 160 yellow-necked mouse individuals (7 microsatellite loci) and 346 bank vole individuals (9 microsatellite loci) were analysed. The results of the differentiation analyses (FST and RST) have shown that both the barrier which is formed by a ca. 300 m wide belt of water (between the island and the mainland) and the actual distance of approximately 10 km in continuous populations are sufficient to create genetic differentiation within both species. The differences between local populations living on opposite lake shores are the smallest; differences between any one of them and the island populations are more distinct. All of the genetic diversity indices (the mean number of alleles, mean allelic richness, as well as the observed and expected heterozygosity) of the local populations from the lakeshores were significantly higher than of the small island populations of these two species separated by the water barrier. The more profound “isolation effect” in the case of the island populations of the bank vole, in comparison to the yellow-necked mouse populations, seems to result not only from the lower mobility of the bank vole species, but may also be attributed to other differences in the animals' behaviour.


2019 ◽  
Vol 57 (4) ◽  
pp. 959-969 ◽  
Author(s):  
Andrea Chiocchio ◽  
Paolo Colangelo ◽  
Gaetano Aloise ◽  
Giovanni Amori ◽  
Sandro Bertolino ◽  
...  

2018 ◽  
Vol 12 (11) ◽  
pp. 2801-2806 ◽  
Author(s):  
Anton Lavrinienko ◽  
Tapio Mappes ◽  
Eugene Tukalenko ◽  
Timothy A. Mousseau ◽  
Anders P. Møller ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 679 ◽  
Author(s):  
Guillaume Castel ◽  
François Chevenet ◽  
Maria Razzauti ◽  
Séverine Murri ◽  
Philippe Marianneau ◽  
...  

Puumala virus is an RNA virus hosted by the bank vole (Myodes glareolus) and is today present in most European countries. Whilst it is generally accepted that hantaviruses have been tightly co-evolving with their hosts, Puumala virus (PUUV) evolutionary history is still controversial and so far has not been studied at the whole European level. This study attempts to reconstruct the phylogeographical spread of modern PUUV throughout Europe during the last postglacial period in the light of an upgraded dataset of complete PUUV small (S) segment sequences and by using most recent computational approaches. Taking advantage of the knowledge on the past migrations of its host, we identified at least three potential independent dispersal routes of PUUV during postglacial recolonization of Europe by the bank vole. From the Alpe-Adrian region (Balkan, Austria, and Hungary) to Western European countries (Germany, France, Belgium, and Netherland), and South Scandinavia. From the vicinity of Carpathian Mountains to the Baltic countries and to Poland, Russia, and Finland. The dissemination towards Denmark and North Scandinavia is more hypothetical and probably involved several independent streams from south and north Fennoscandia.


Sign in / Sign up

Export Citation Format

Share Document