On Completion of the Cone of Completely Positive Linear Maps with Respect to the Energy-Constrained Diamond Norm

2019 ◽  
Vol 40 (10) ◽  
pp. 1549-1568
Author(s):  
M. E. Shirokov
1972 ◽  
Vol 24 (3) ◽  
pp. 520-529 ◽  
Author(s):  
Man-Duen Choi

The objective of this paper is to give some concrete distinctions between positive linear maps and completely positive linear maps on C*-algebras of operators.Herein, C*-algebras possess an identity and are written in German type . Capital letters A, B, C stand for operators, script letters for vector spaces, small letters x, y, z for vectors. Capital Greek letters Φ, Ψ stand for linear maps on C*-algebras, small Greek letters α, β, γ for complex numbers.We denote by the collection of all n × n complex matrices. () = ⊗ is the C*-algebra of n × n matrices over .


2013 ◽  
Vol 25 (02) ◽  
pp. 1330002 ◽  
Author(s):  
SEUNG-HYEOK KYE

In this expository note, we explain facial structures for the convex cones consisting of positive linear maps, completely positive linear maps, and decomposable positive linear maps between matrix algebras, respectively. These will be applied to study the notions of entangled edge states with positive partial transposes and optimality of entanglement witnesses.


1994 ◽  
Vol 17 (3) ◽  
pp. 607-608
Author(s):  
Mingze Yang

In this note, we study the faces of some convex subsets ofCPc(A,B(ℋ))(the continuous completely positive linear maps from pro-C*-algebraAtoB(ℋ)).


Author(s):  
George A. Elliott

AbstractIt is shown that a sequence of completely positive linear maps on a W*-algebra that converges pointwise in norm to the identity converges uniformly.


Sign in / Sign up

Export Citation Format

Share Document