Determination of rate constants of redox reactions of second order from current-less potential-time curves by a simplified graphical-numerical method

1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.

1999 ◽  
Vol 64 (11) ◽  
pp. 1770-1779 ◽  
Author(s):  
Herbert Mayr ◽  
Karl-Heinz Müller

The kinetics of the electrophilic additions of four diarylcarbenium ions (4a-4d) to tricarbonyl(η4-cyclohepta-1,3,5-triene)iron (1) have been studied photometrically. The second-order rate constants match the linear Gibbs energy relationship log k20 °C = s(E + N) and yield the nucleophilicity parameter N(1) = 3.69. It is concluded that electrophiles with E ≥ -9 will react with complex 1 at ambient temperature.


1986 ◽  
Vol 6 (6) ◽  
pp. 724-738 ◽  
Author(s):  
A. C. Evans ◽  
M. Diksic ◽  
Y. L. Yamamoto ◽  
A. Kato ◽  
A. Dagher ◽  
...  

Regional cerebral blood volume (CBV) can be calculated using data obtained during the kinetic analysis of 18F-labeled 2-fluoro-2-deoxy-d-glucose (FDG) uptake measured by positron emission tomography (PET). As a result the influence of vascular activity upon the determination of FDG rate constants can be minimized. The method is investigated by simulation experiments and by analysis of PET studies on seven older, healthy human volunteers aged 52–70 years. The accuracy of measured FDG rate constants k1, k2, and k3, obtained either by omitting the early portion of the uptake curve or by explicit inclusion of CBV as a fit parameter, is compared. The root mean square error in measured rate constant for the latter method is equivalent to that obtained by omitting the first 2.5–3 min of tissue data and neglecting the CBV term. Hence, added information about the physiological state of the tissue is obtained without compromising the accuracy of the (FDG) rate constant measurement. In hyperemic tissue the explicit determination of the vascular fraction results in more accurate estimates of the FDG rate constants. The ratio of CBV determined by this method to CBV obtained using C15O in six subjects with CBV in the normal range was 0.92 ± 0.32. A comparison of the CBV image obtained by this method with that obtained using C15O in an arteriovenous malformation case demonstrates the accuracy of the approach over a wide range of CBV values. The mean value for CBV fraction in gray matter obtained by this method in the older control group was 0.040 ± 0.014. Average gray matter rate constants obtained were k1 = 0.084 ± 0.012, k2 = 0.150 ± 0.071, and k3 = 0.099 ± 0.045 min−1.


1984 ◽  
Vol 62 (3) ◽  
pp. 580-585 ◽  
Author(s):  
Parminder S. Surdhar ◽  
Rizwan Ahmad ◽  
David A. Armstrong

Spectral changes and rates of reaction of flavins and several radical species have been investigated at pH 7, 9, and 10 in the presence and absence of β-mercaptoethanol. The radicals •CO2−, eaq−, and [Formula: see text] reacted with FAD at pH 10 to give a spectrum of FAD •Fl− with rate constants of 7 ± 1 × 108 and 4 ± 1 × 108 M−1 s−1 for •CO2− and [Formula: see text] respectively. At pH 7 only •FlH was observed and at pH 9 a mixture of •FIH and •Fl−.Interactions between flavin radicals and sulphydryl at 10−4 M concentration did not cause perturbations in the uv–visible spectra until either the radical and/or the sulphydryl were ionized. With FAD at pH 9 or 10 and LFl at pH 10 the 370 nm peak of •Fl− was enhanced by about 15% and a second larger growth occurred near 450 nm in the presence of 10−4 to 10−2 M sulphydryl. We attribute this to the formation of labile intermediate RSHFl•−, which must also be involved in the reduction of Fl by [Formula: see text] at pH 9 or 10.The second order rate constant k13 for reaction of [Formula: see text] with FAD at pH 9 and 10 was found to be 4.2 ± 0.5 × 108 M−1 s−1 and 2.0 ± 0.4 × 108 M−1 s−1 respectively. The rate constant for the reaction between [Formula: see text] and LFl at pH 10 was slightly faster, 7 ± 1 × 108 M−1 s−1, probably reflecting the fact that LFl lacks the bulky negatively charged adenine dinucleotide group of FAD.


2021 ◽  
Vol 43 (2) ◽  
pp. 125-134
Author(s):  
Damha Kim ◽  
In-Soung Chang

Objectives : Determination of reaction order (n) and rate constants (k) of the CaCO<sub>3</sub> scale formation reaction that was accelerated by the HVI (high voltage impulse) induction.Methods : HVI was inducted to the synthetic solution containing 2.5 mM of Ca<sup>2+</sup> ion at different temperatures of 25, 40, 60℃. The concentration of Ca<sup>2+</sup> ion has been monitored as voltages of the HVI increased from 0 to 5, 10, 15 kV. Reaction order and the rate constants of the CaCO<sub>3</sub> formation reaction were determined with the experimental dataset of Ca<sup>2+</sup> concentration vs. time plots.Results and Discussion : The CaCO<sub>3</sub> formation was determined to follow two-molecules 2<sup>nd</sup> order reaction. The reaction rate constant, k increased as temperature and the applied voltages of HVI increased. The rate constant, k at 25℃ and 15 kV of HVI was 8.2×10<sup>-3</sup> L/(mmol・hr), which was 2.7 times greater than the k of the control at 25℃, 3.0×10<sup>-3</sup> L/(mmol・hr).Conclusions : The reaction of CaCO<sub>3</sub> formation was accelerated by HVI as the applied voltages of HVI increased, indicating that the HVI could be used as an alternative desalting technology for scale control.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2029-2029
Author(s):  
S. Paul Bajaj ◽  
Amanda Sutton ◽  
Sreejesh Shanker ◽  
Amy E Schmidt ◽  
Sayeh Agah ◽  
...  

Abstract Factor VII (FVII) consists of an N-terminal γ-carboxyglutamic acid (Gla) domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. The complex of tissue factor (TF) and FVIIa activates FIX and FX during coagulation. FVIIa on its own is structurally more “zymogen-like” and when bound to TF it is more “active enzyme-like.” We obtained crystal structures of EGR-VIIa/soluble (s) TF (2.9 Å resolution), dansyl-EGR-VIIa/sTF (1.9 Å resolution) and benzamidine-VIIa/sTF (1.6 Å resolution). We also investigated the effect of TF binding on the S1, S2, and S3/S4 subsites (Schechter and Berger, BBRC, 27:157-162, 1967) in FVIIa. The affinity of variously inhibited FVIIa to sTF was also measured using Biacore technology. For obtaining second order inhibition rate constants, FVIIa ± soluble (s) TF was incubated with each inhibitor for various times, diluted several fold and assayed for the residual FVIIa activity. The second order rate constants were obtained by plotting the first order rate constants versus the inhibitor concentrations. These data are summarized in the table below. From these data it appears that all subsites are affected upon FVIIa binding to sTF. Since in the crystal structure of EGR-VIIa/sTF the P1 Arg residue is the only residue that makes contact with FVIIa, it follows that the S1 site is affected ~10-fold upon binding to sTF. Adding a dansyl group that partially occupies the S3/S4 position (1.9 Å structure) increases the second order rate constant 7-fold (2.41 versus 0.35) over that of EGR-ck. Moreover the addition of Pro (DFPR-ck) or Phe (DFFR-ck) residue occupying the S2 position increases the second order rate constant 357-fold and 1500- fold, respectively (125 and 525 versus 0.35). Thus, comparison of dEGR, DFPR, DFFR inhibition suggests that FVIIa prefers Phe at S2 and at S3/S4 positions, and that TF opens up the S1/S2/S3/S4 sites for substrate or inhibitor occupancy. These data are consistent with LTR (P3/P2/P1) residues in FX at its activation cleavage site as well as with LTR (P3/P2/P1) residues and FTR (P3/P2/P1) residues at the 145-146 and 180-181 FIX activation cleavage sites, respectively. Thus, these studies with chloromethylketone inhibitors have biologic relevance. For Biacore studies, sTF was amine coupled to a CM5 chip. The binding of unoccupied active site FVIIa in 5 mM calcium to sTF was characterized by a KD of 7 nM. Benzamidine (10 mM)-VIIa, p-aminobenzamidine (pAB, 1 mM)-VIIa, EGR-VIIa, dEGR-VIIa, DFPR-VIIa and DFFR-VIIa each bound to sTF with KD values ranging from 1- 2 nM. These affinity measurements indicate that the S1 site occupied FVIIa molecule (benzamidine-FVIIa, pAB-VIIa) has essentially the same conformation as the S1/S2/S3/S4 occupied FVIIa. This conclusion is consistent with similar crystal structures of variously inhibited FVIIa molecules complexed with sTF. The differential rates of incorporation of various chloromethylketone inhibitors could be due to the interaction of various residues (P1, P2, P3, P4) with the corresponding active subsites (S1/S2/S3/S4) of FVIIa. Additionally, the rate of incorporation of chloromethylketone inhibitors into FVIIa also involves the irreversible alkylation step, which could be faster for DFFR-ck and DFPR-ck. Once these inhibitors are incorporated, it appears that they induce the same conformation in FVIIa as achieved by S1 site occupancy alone. Thus S1 site occupancy in FVIIa induces the required conformation to modestly increase the affinity for TF. Second Order Rate Constants for Inhibition of FVIIa ± sTF with Various Chloromethylketone (ck) Inhibitors Inhibitor Minus sTF k (min−1 mM−1) Plus sTF k (min−1 mM−1) Fold Difference EGR-ck 0.04 0.35 8.8 dansyl EGR-ck 0.07 2.41 34.4 (D)FPR-ck 2.3 125 54.3 D)FFR-ck 5.6 525 93.8


Sign in / Sign up

Export Citation Format

Share Document