Oxygen transfer in high-speed fermenter under steady cultivation conditions

1987 ◽  
Vol 52 (11) ◽  
pp. 2654-2663
Author(s):  
Pavel Seichter

A method for volume mass transfer coefficient calculation under steady fermentation conditions, including correction of partial oxygen pressure in bubbles, has been developed. Number of continuous cultivations on ethanol and sulphite substrates were evaluated on the basis of the suggested method.

2016 ◽  
Vol 10 (8) ◽  
pp. 142 ◽  
Author(s):  
Gustavo Andrés Baquero-Rodríguez ◽  
Jaime A. Lara-Borrero

Aeration is usually the most energy intensive part of the wastewater treatment process. Optimizing the aeration system is essential for reducing energy costs. Field tests oriented to estimate parameters related to oxygen transfer are a common approach to compare aeration systems. The aim of this research is to assess the effect of dissolved oxygen probe lag on oxygen transfer parameter estimation. Experimental procedures regarding to process automation and control were applied to quantify dissolved oxygen probe lag. We have measured oxygen transfer in clean water, under a wide range of conditions (airflow rate, diffuser characteristics and diffuser density), with optic and polarographic sensors for dissolved oxygen measurement. The oxygen transfer was measured as per ASCE Standard procedures. Nonparametric statistical tests were used to compare the estimated volumetric mass transfer coefficient KLa with different sensors. According to the results, there is not significant influence of the probe lag (also known as time constant) or probe characteristics on the parameters used to assess oxygen transfer efficiency. This fact has great relevance in common practice of aerobic process for wastewater treatment because dissolved oxygen monitoring is used as an input for decision making related to the energy optimization in the aeration system. Findings from these tests contradict previous studies which claim that lag time in polarographic sensors for the dissolved oxygen measurement can bias estimate KLa.


2019 ◽  
Vol 4 (2) ◽  
pp. 24-32
Author(s):  
S.H. Tan ◽  
◽  
Jamaiatul Lailah M.J. ◽  
Aida Isma M.I. ◽  
◽  
...  

Activated sludge process is one of the effective methods in biological wastewater treatment and the impact of oxygen transfer through aeration process has the most important breakthroughs as it served as the largest consumer in the treatment. Aeration is an energy demanding process. Oxygen transfer into an activated sludge is a very challenging issue in the field of multiphase flows. Apart from the physical mass transfer phenomena between gas, liquid and solids phases, the transport mechanisms are also overlapped by time and temperature, varying microbial activity, impurity loads, adsorption and desorption processes. Oxygen uptake rate (OUR) for microbial population in the activated sludge system is important parameter to determine the amount of oxygen consumed during aerobic heterotropic biodegradation in the system. Evaluation of specific oxygen uptake rate (SOUR) and the volumetric mass transfer coefficient (KLA) of oxygen for three different wastewater treatment processes, namely conventional activated sludge (CAS), oxidation ditch (OD) and sequencing batch reactor (SBR) treating municipal wastewater in Kuala Lumpur have been carried out. In-situ and ex-situ measurement of pH, dissolved oxygen (DO), temperature, MLSS and MLVSS were carried out. In the activated sludge treatment, very low concentration of dissolved oxygen may cause the wastewater to turn septic resulting in death of bacteria or in active due to unstable anaerobic conditions. Conversely, an excessive dissolved oxygen may result to high energy and high 25 operating cost. Higher flowrate may also cause dissolved oxygen to rise, reducing the quality of sludge and slowing the denitrification process in the system. Results revealed that the OUR for SBR, OD and CAS were 9.582 mg O2 /L/hr, 10.074 mg O2 /L/hr and 13.764 mg O2 /L/hr, respectively. Low oxygen uptake rate indicates a low rate of microbial respiration. By computing the OUR, the mass transfer coefficient could be evaluated. It should be noted that among the treatment system in this study, the conventional activated sludge shows the highest mass transfer coefficient and specific oxygen uptake rate of 2.038 hr-1 and 15.605 mg O2 /g MLVSS/hr, respectively. Improving the oxygen transfer rate and reducing aeration in the system could achieve a cost-effective aeration system.


2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Anna Kiełbus-Rąpała ◽  
Joanna Karcz

AbstractThe aim of the research work was to investigate the effect of the presence and concentration of solid particles on the gas-liquid volumetric mass transfer coefficient in a mechanically stirred gas-solid-liquid system. Experimental studies were conducted in a tall vessel of the diameter of 0.288 m, equipped with two designs of double stirrers. Three high-speed stirrers were used: A 315, Smith turbine, and Rushton turbine. The following operating parameters were changed: gas flow rate, stirrer speed, and solid concentration. The volumetric mass transfer coefficient was determined using the dynamic gassing-out method. In the range of the measurements conducted, this coefficient was strongly affected by both the presence and the concentration of particles in the system. Generally, a low concentration of particles in the system, equal to 0.5 mass %, caused an increase of the volumetric mass transfer coefficient values for both stirrer configurations compared to a system without solids whilst more particles (2.5 mass %) caused a decrease of this coefficient. It could be supposed that an increase of slurry viscosity affected the decrease of the volumetric mass transfer coefficient at higher solid concentration. An empirical correlation was proposed for volumetric mass transfer coefficient prediction. Its parameters were fitted using experimental data.


2007 ◽  
Vol 55 (11) ◽  
pp. 183-191 ◽  
Author(s):  
H. Zhu ◽  
T. Imai ◽  
K. Tani ◽  
M. Ukita ◽  
M. Sekine ◽  
...  

In aerated ponds, oxygen is generally supplied through either diffused or mechanical aeration means. Surface transfer and bubble transfer both contribute significantly to oxygen transfer in a diffused aeration system. In the present study, a liquid-film-forming apparatus (LFFA) is successfully developed on a laboratory scale to improve considerably the surface transfer via the unique liquid film transfer technique. The experimental results show that the volumetric mass transfer coefficient for LFFA alone is found to be as much as 5.3 times higher than that for water surface and that the total volumetric mass transfer coefficient for the liquid film aeration system increases by 37% in comparison with a conventional aeration system. Additionally, by tuning finely the structural parameters of the LFFA, it can also lead to high dissolved oxygen (DO) water with the DO percent saturation greater than 90%. More importantly, this result is accomplished by simply offering a single-pass aeration at a depth as shallow as 26 cm. As a result, the objective of economical energy consumption in aerated ponds can be realized by lowering the aeration depth without sacrificing the aeration efficiency. It is noteworthy that the data presented in this study are acquired either numerically or experimentally.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2809
Author(s):  
Cui Dai ◽  
Jinnan Guo ◽  
Jiawei Liu ◽  
Liang Dong ◽  
Houlin Liu

In order to understand the aeration performance of inverted umbrella aerator and bubble characteristics in aeration tank under different conditions, and to reveal the internal relationship between bubble characteristics and aeration performance, an experimental bench of dissolved oxygen concentration and high-speed photography was built. Logarithmic oxygen deficit values were fitted under various conditions. The images captured by high-speed photography were processed, then the bubble characteristics were extracted accurately. It was found that the standard oxygen mass transfer coefficient increased linearly with an increase of rotational speed at a certain immersion depth, and increased firstly then decreased with a decrease of immersion depth when rotational speed was kept constant. The bubble size ranged from 0 mm to 1.59 mm under different working conditions, and the variation of the gas holdup was the same as the standard oxygen mass transfer coefficient when the rotational speed and immersion depth were changing. It was shown that bubbles play a leading role in the process of oxygen mass transfer and have a great influence on oxygen mass transfer rate.


Sign in / Sign up

Export Citation Format

Share Document