scholarly journals Partial nephrogenic diabetes insipidus associated with lithium therapy

2019 ◽  
Vol 12 (9) ◽  
pp. e231093 ◽  
Author(s):  
Eka Nandoshvili ◽  
Steve Hyer ◽  
Nikhil Johri

A 40-year-old Caucasian man developed excessive thirst and polyuria particularly at night over the preceding 6 months. He had been taking lithium for 16 years for the treatment of bipolar affective disorder. Investigations revealed subnormal maximum urinary concentrating ability after 8 hours of water deprivation and only a borderline response of urine osmolality to exogenous desmopressin given by intramuscular injection. A plasma copeptin concentration was elevated at 23 pmol/L. These results were consistent with partial nephrogenic diabetes insipidus. He was encouraged to increase his water intake as dictated by his thirst. In addition, he received amiloride with some improvement in his symptoms. Clinicians should be aware of the risk of nephrogenic diabetes insipidus with long-term lithium use and seek confirmation by a supervised water deprivation test augmented with a baseline plasma copeptin. If increased water intake is insufficient to control symptoms, amiloride may be considered.

PEDIATRICS ◽  
1970 ◽  
Vol 45 (2) ◽  
pp. 236-245
Author(s):  
Robert M. Ehrlich ◽  
Sang Whay Kooh

Oral chlorpropamide was administered to 17 children with diabetes insipidus (D.I.). The cause of the D.I. was idiopathic, six; histiocytosis, five; craniopharyngioma, three; pinealoma, two, and post-traumatic, one. Twenty-four-hour urine volume and measurements of serum and urine osmolality at the beginning and end of a 7-hour water deprivation test were used to evaluatechlorpropamide therapy. Administration of 150 to 400 mg of chlorpropamide per day by mouth caused a reduction in urine volume in all patients (range 8 to 67%). No change in aldosterone, 17-hydroxycorticoids, or electrolyte excretion was noted. Serum electrolytes and glomerular filtration rate were not affected by therapy. Glucose tolerance and plasma insulin response remained normal in those patients tested. Mild leucine sensitivity without significant change in plasma insulin was induced in four children. During water deprivation, seven patients with secondary D.I. but only one with idiopathic D.I. produced hypertonic urine. Hypoglycemia developed in seven children and is the major hazard of treatment. Long-term management of D.I. has been possible in nine children. Oral chlorpropamide is a useful drug in children with vasopressin-sensitive diabetes insipidus.


PEDIATRICS ◽  
1963 ◽  
Vol 32 (3) ◽  
pp. 384-388
Author(s):  
Malcolm A. Holliday ◽  
Charles Burstin ◽  
Jean Harrah

The antidiuretic activity in the plasma of four children with nephrogenic diabetes insipidus was measured by a rat assay technique. The evidence presented to indicate that this activity was due to antidiuretic hormone (ADH) was as follows: (a) the activity was higher in jugular vein plasma than in femoral or antecubital vein plasma, (b) it was high when the children were thirsted and decreased when they drank water, (c) it was destroyed when the plasma was incubated with thioglycollate, and (d) it was ultrafilterable, and vasopressin (Pitressin), when injected, was distributed as though it was ultrafilterable. When the children were given vasopressin, there was no change in urine flow or osmolality, but plasma antidiuretic activity was higher than it was when water deprivation led to a reduction in urine flow and an increase in urine osmolality. The inference of these findings is that ADH is secreted normally in children with nephrogenic diabetes insipidus, it is ultrafilterable, but it is not a factor in modifying urine flow in response to dehydration.


1988 ◽  
Vol 117 (1) ◽  
pp. 13-18 ◽  
Author(s):  
D. B. Dunger ◽  
J. R. Seckl ◽  
D. B. Grant ◽  
L. Yeoman ◽  
S. L. Lightman

Abstract. The value of a 7-h water deprivation test incorporating urinary osmolality and urinary arginine vasopressin (AVP) measurements was investigated in 20 children with suspected anterior or posterior pituitary dysfunction (group A) and 11 presenting with polyuria and polydipsia (group B). A control group of 16 healthy children was also studied. Urinary osmolalities in the control subjects after 7 h of water deprivation were 827–1136 mosmol/kg and urinary AVP 114–320 pmol/l. Of the group A patients, 5 had symptomatic diabetes insipidus with urinary osmolalities < 300 mosmol/kg, and urinary AVP concentrations of < 10 pmol/l, and 5 had normal urinary concentrating ability. The other 10 patients had varying degrees of partial diabetes insipidus (urinary AVP 6–53 pmol/l) although in 3 urinary concentrating ability was well maintained (osmolality 650–747 mosmol/kg). In group B, a diagnosis of compulsive water drinking was made in 9 patients, 1 had nephrogenic diabetes insipidus (urinary osmolality 68 mosmol/kg, AVP 782 pmol/l), and the final patient had transient diabetes insipidus. The test described was easy to perform and well tolerated even in young children. Using this test alone, it was possible to identify patients with partial defects of posterior pituitary function even when urinary concentrating ability was maintained, as well as those with complete cranial diabetes insipidus, nephrogenic diabetes insipidus, and compulsive water drinking.


1989 ◽  
Vol 256 (4) ◽  
pp. F639-F645 ◽  
Author(s):  
E. J. Braun ◽  
J. N. Stallone

Nephrogenic diabetes insipidus (NDI) results from an inability of the kidney to concentrate the urine. The underlying cause of NDI is the failure of the collecting ducts to respond to antidiuretic hormone, however, the specific tubular defect is not well understood. In the present investigation an apparent case of NDI was studied in a strain of White Leghorn domestic fowl. In this strain, water intake of the males equaled 24.0% (controls 5.4%) of their body mass (BM) per day while that of the females equaled 51.4% (controls 11.7%) of their BM per day. Plasma osmolality (mosmol/kgH2O) of the NDI birds was significantly higher than that of controls (males 319 +/- 1.7 vs. 311 +/- 1.2; females 323 +/- 1.5 vs. 310 +/- 2.2). Urine osmolality of NDI birds was substantially lower than that of controls (males 90 +/- 6.2 vs. 524 +/- 4.0; females 70 +/- 4.7 vs. no value). In response to water deprivation, plasma osmolality of the NDI birds increased more markedly than that of the control animals (males 357 +/- 2.5 vs. 331 +/- 1.2; females 375 +/- 6.0 vs. 348 +/- 1.4 at 48 h of water deprivation). Basal plasma antidiuretic hormone (plasma arginine vasotocin, PAVT) levels in male NDI birds (9.9 +/- 0.7 microU/ml) and in female NDI birds (7.0 +/- 0.5 microU/ml) were nearly sixfold or nearly threefold higher, respectively, than in control birds. In response to water deprivation, PAVT of both NDI and control birds increased to similar levels, although the absolute increases in PAVT levels were substantially less in NDI birds.(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 41 (3) ◽  
pp. 193-195
Author(s):  
Rumana Riaaz ◽  
Mahbub Mutanabbi ◽  
Kohinoor Jahan Shamaly ◽  
CA Kawser

Nephrogenic Diabetes Insipidus (NDI) is a type of Diabetes Insipidus (DI) where distal nephrons are unresponsive to antidiuretic hormone resulting in polyuria and polydipsia. NDI can be congenital or acquired. There are very few cases of congenital NDI, more in sibs. Here we report two sibs affected with congenital NDI. Both of them presented with polyuria, polydipsia and failure to thrive since early infancy. In both cases, water deprivation tests and urine osmolality were done before and after DDAVP that suggested NDI and the acquired causes has been excluded. Both of them were treated with oral Hydrochlorothiazide and improved.Bangladesh J Child Health 2017; VOL 41 (3) :193-195


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alice Yau ◽  
Gul Bahtiyar ◽  
Giovanna Rodriguez ◽  
Jose R Martinez Escudero

Abstract Background: Lithium, commonly used to treat various psychiatric disorders such as bipolar disorder, can cause acute toxicity that presents with nausea, vomiting and diarrhea. Lithium can also cause life-threatening endocrine abnormalities, including hypercalcemia, hypernatremia, and both hypo- and hyperthyroidism. Clinical Case: A 61-year old female with hypothyroidism, bipolar disorder, hyperparathyroidism with two-gland parathyroidectomy on lithium for over 30 years presented with altered mental status. Initial labs revealed elevated creatinine 1.92 mg/dL (0.8-2.00mg/dL) compared to baseline 0.82 mg/dL, sodium 154 mg/dL (135-147 mg/dL), Corrected calcium 11.7 mg/dL (8.5-10.5 mg/dL), PTH 96 pg/mL (15-65 pg/mL), and high lithium levels 1.45 mmol/L (0.60-1.20 mmol/L). Further studies showed hypotonic polyuria with no increase in urine osmolality after desmopressin, consistent with nephrogenic diabetes insipidus. Lithium was held and she was treated with aggressive intravenous hydration with dextrose 5% water. Hypercalcemia is thought to result from increased secretion of PTH due to an increased set point at which calcium suppresses PTH release; this often resolves once lithium is stopped. Lithium can also unmask previously unrecognized mild hyperparathyroidism, and/or raise serum PTH concentrations independent of calcium levels.1 The drug interferes with the kidneys’ ability to concentrate urine in the collecting tubules by desensitizing response to antidiuretic hormone, causing diabetes insipidus. The resulting volume depletion from excessive urinary water loss in turn lead to acute kidney injury and hypernatremia.2 Hypothyroidism results from lithium-inhibited synthesis and release of thyroid hormones and decreases iodine trapping. Conclusion: Although these are infrequent complications of lithium use, they remain pertinent clinical findings to consider due to their morbidity. In this case, our patient may have avoided multiple chronic electrolyte abnormalities leading to altered mental status if lithium toxicity had been recognized earlier. References:1. García-Maldonado, Gerardo, and Rubén de Jesús Castro-García. “Endocrinological Disorders Related To The Medical Use Of Lithium. A Narrative Review”. Revista Colombiana De Psiquiatría (English Ed.), vol 48, no. 1, 2019, pp. 35-43. Elsevier BV, doi:10.1016/j.rcpeng.2018.12.005. 2. Tasci, E. “Lithium-Induced Nephrogenic Diabetes Insipidus Responsive To Desmopressin”. Acta Endocrinologica (Bucharest), vol 15, no. 2, 2019, pp. 270-271. ACTA Endocrinologica Foundation, doi:10.4183/aeb.2019.270.


1996 ◽  
Vol 270 (3) ◽  
pp. R550-R555 ◽  
Author(s):  
Y. X. Wang ◽  
J. T. Crofton ◽  
J. Miller ◽  
C. J. Sigman ◽  
H. Liu ◽  
...  

Our previous demonstration of sexual dimorphism in the antidiuretic response to exogenous vasopressin prompted us to investigate the response to moderately high levels of endogenous vasopressin stimulated by water deprivation in conscious rats. After 24 h water deprivation, urine flow was significantly higher and urine osmolality lower in females than in males. Plasma concentrations of vasopressin were higher in females than in males after water deprivation, but plasma osmolality did not differ. Gonadectomy, which had no effect in dehydrated males, decreased urine flow and increased urine osmolality in females to levels observed in intact and gonadectomized males. Spontaneous water intake was also measured and found to be lower in males and estrous females than in females in the other phases of the estrous cycle. These observations support the concept that there is a gender difference in the antidiuretic responsiveness to endogenous vasopressin, that this difference is dependent upon the ovarian hormones, and that it may lead to differences in consumptive behavior.


Author(s):  
Tom Burns ◽  
Mike Firn

This chapter deals with the other major psychotic illness, bipolar affective disorder. Bipolar disorder poses a difficult question for outreach workers, as patients are often well recovered between episodes—so should persisting outreach be provided? We report very good results in severe bipolar disorder where continuity of care has paid off. The chapter also deals with theories of causation and classification. The section on treatment identifies the importance of early admission in hypomania, the use of mood stabilizers, and the value of identifying and agreeing on relapse signatures. It also confirms the value of working hard to strengthen the therapeutic relationship and of psychosocial interventions such as psycho-education. Long-term work with these patients brings home just how persistent and disabling the depressive phases can be.


2019 ◽  
Vol 32 (5) ◽  
pp. e100102
Author(s):  
Sujita Kumar Kar ◽  
Suyash Dwivedi

Zolpidem is a short-acting non-benzodiazepine hypnotic agent, commonly recommended for short-term treatment of insomnia. Zolpidem has less dependence potential than benzodiazepines. Patients with mental illnesses often have disturbed sleep, for which zolpidem is often prescribed. Long-term use and self-medication (in more than recommended doses) are more likely to cause dependence. We report here a case of bipolar affective disorder with epilepsy, who developed dependence to zolpidem and had severe withdrawal symptoms. The management issues are also discussed with review of the literature.


2017 ◽  
Vol 313 (3) ◽  
pp. F669-F676 ◽  
Author(s):  
Theun de Groot ◽  
Joan Doornebal ◽  
Birgitte M. Christensen ◽  
Simone Cockx ◽  
Anne P. Sinke ◽  
...  

Lithium is the mainstay treatment for patients with bipolar disorder, but it generally causes nephrogenic diabetes insipidus (NDI), a disorder in which the renal urine concentrating ability has become vasopressin insensitive. Li-NDI is caused by lithium uptake by collecting duct principal cells and downregulation of aquaporin-2 (AQP2) water channels, which are essential for water uptake from tubular urine. Recently, we found that the prophylactic administration of acetazolamide to mice effectively attenuated Li-NDI. To evaluate whether acetazolamide might benefit lithium-treated patients, we administered acetazolamide to mice with established Li-NDI and six patients with a lithium-induced urinary concentrating defect. In mice, acetazolamide partially reversed lithium-induced polyuria and increased urine osmolality, which, however, did not coincide with increased AQP2 abundances. In patients, acetazolamide led to the withdrawal of two patients from the study due to side effects. In the four remaining patients acetazolamide did not lead to clinically relevant changes in maximal urine osmolality. Urine output was also not affected, although none of these patients demonstrated overt lithium-induced polyuria. In three out of four patients, acetazolamide treatment increased serum creatinine levels, indicating a decreased glomerular filtration rate (GFR). Strikingly, these three patients also showed a decrease in systemic blood pressure. All together, our data reveal that acetazolamide does not improve the urinary concentrating defect caused by lithium, but it lowers the GFR, likely explaining the reduced urine output in our mice and in a recently reported patient with lithium-induced polyuria. The reduced GFR in patients prone to chronic kidney disease development, however, warrants against application of acetazolamide in Li-NDI patients without long-term (pre)clinical studies.


Sign in / Sign up

Export Citation Format

Share Document