Novel compound heterozygous variants in the NBAS gene in a child with osteogenesis imperfecta and recurrent acute liver failure

2021 ◽  
Vol 14 (2) ◽  
pp. e234993
Author(s):  
Sowmya Krishnan ◽  
Ankur Rughani ◽  
Anne Tsai ◽  
Sirish Palle

Osteogenesis imperfecta (OI) consists of a group of genetically and phenotypically heterogeneous diseases characterised by bone fragility. Recent improvement in gene sequencing methods has helped us identify rare forms of OI that are inherited in an autosomal recessive manner. Paediatric endocrinology was consulted on a newborn girl with multiple fractures and wavy thin ribs noted on X-rays. In addition to the bone phenotype, she also has short stature and recurrent acute liver failure (ALF) episodes triggered by intercurrent illness. Whole exome sequencing revealed two novel compound heterozygous variants in neuroblastoma amplified sequence (NBAS) gene. NBAS gene codes for a protein that is involved in nonsense-mediated decay pathway and retrograde transport of proteins from Golgi to endoplasmic reticulum. Recognition of pathogenic variants in this gene as a rare cause of autosomal recessive OI and recurrent ALF has important therapeutic implications.

Author(s):  
Д.А. Петухова ◽  
Е.Е. Гуринова ◽  
А.Л. Сухомясова ◽  
Н.Р. Максимова

В статье представлены клинические, молекулярно-генетические характеристики 6-летнего пациента с клиническими признаками SOPH-синдрома, печеночной недостаточностью, а также хрупкостью костей по типу несовершенного остеогенеза. В результате массового параллельного секвенирования были обнаружены описанная мутация с.5741G>A (p.Arg1914His) и ранее не описанный миссенс-вариант c.2535G>T (p.Trp845Cys) гена NBAS в компаунд-гетерозиготном состоянии. Here, we describe a case of a 6-year-old Yakut girl who presented with clinical signs of SOPH syndrome, acute liver failure (ALF) and bone fragility by the type of osteogenesis imperfecta. Targeted panel sequencing for 494 genes of connective tissue diseases of the patient revealed that he carried novel compound heterozygous missense mutation in NBAS, c.2535G>T (p.Trp845Cys), с.5741G>A (p.Arg1914His).


Author(s):  
Francisco Javier Cotrina-Vinagre ◽  
María Elena Rodríguez-García ◽  
Elena Martín-Hernández ◽  
Cristina Durán-Aparicio ◽  
Abraham Merino-López ◽  
...  

Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 91 ◽  
Author(s):  
Alina Grama ◽  
Ligia Blaga ◽  
Alina Nicolescu ◽  
Călin Deleanu ◽  
Mariela Militaru ◽  
...  

Classic galactosemia is an autosomal recessive disorder caused by the deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT) involved in galactose metabolism. Bacterial infections are a known cause of early morbidity and mortality in children with classic galactosemia. The most common agent is Escherichia coli, but in rare situations, other bacteria are incriminated. We report a case of a three-week-old female patient with galactosemia, who presented with Group B Streptococcus (GBS) meningitis/sepsis. She received treatment with antibiotics, supportive therapy, and erythrocyte transfusion, but after a short period of improvement, she presented acute liver failure with suspicion of an inborn error of metabolism. Rapid nuclear magnetic resonance (NMR) spectroscopy from urine showed highly elevated values of galactose and galactitol. Under intensive treatment for acute liver failure and with a lactose-free diet, her clinical features and laboratory parameters improved considerably. Genetic testing confirmed compound heterozygous status for GALT mutations: c.563 A>G [p.Q188R] and c. 910 C>T, the last mutation being a novel mutation in GALT gene. In countries without an extensive newborn screening program, a high index of suspicion is necessary for early diagnosis and treatment of galactosemia.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yen-An Tang ◽  
Lin-Yen Wang ◽  
Chiao-May Chang ◽  
I-Wen Lee ◽  
Wen-Hui Tsai ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiao-Hui Wang ◽  
Le Xie ◽  
Sen Chen ◽  
Kai Xu ◽  
Xue Bai ◽  
...  

Congenital deafness is one of the most common causes of disability in humans, and more than half of cases are caused by genetic factors. Mutations of the MYO15A gene are the third most common cause of hereditary hearing loss. Using next-generation sequencing combined with auditory tests, two novel compound heterozygous variants c.2802_2812del/c.5681T>C and c.5681T>C/c.6340G>A in the MYO15A gene were identified in probands from two irrelevant Chinese families. Auditory phenotypes of the probands are consistent with the previously reported for recessive variants in the MYO15A gene. The two novel variants, c.2802_2812del and c.5681T>C, were identified as deleterious mutations by bioinformatics analysis. Our findings extend the MYO15A gene mutation spectrum and provide more information for rapid and precise molecular diagnosis of congenital deafness.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Jin ◽  
Xiaotun Ren ◽  
Husheng Wu ◽  
Yanqi Hou ◽  
Fang Fang

Background: Leukoencephalopathy with cerebral calcifications and cysts (LCC) is a rare autosomal recessive cerebral microangiopathy. Recently, biallelic variants in a non-protein-coding gene SNORD118 have been discovered to cause LCC.Case Presentation: We here report a genetically confirmed childhood case of LCC. The patient was a 4-year-and-1-month-old boy with focal seizures. The age at onset of his seizure was 10 days after birth. The seizures were well-controlled by antiepileptic treatment but reoccurred twice due to a head impact accident and a fever, respectively. He suffered from a self-limited esotropia and unsteady running gait during the seizure onset. He had the typical neuroimaging triad of multifocal intracranial calcifications, cysts, and leukoencephalopathy. Genetic analysis indicated that he carried compound heterozygous variants of n.*9C>T and n.3C>T in SNORD118, which were inherited from his parents.Conclusion: We report a childhood LCC case with compound heterozygous variants in SNORD118. To the best of our knowledge, the patient reported in our case had the youngest onset age of LCC with a determined genotype. The triad cerebral-imaging findings of calcifications, cysts, and leukoencephalopathy provide a crucial diagnostic basis. Moreover, the gene assessment, together with the clinical investigations, should be considered for the diagnosis of LCC.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Evelina Siavrienė ◽  
Gunda Petraitytė ◽  
Birutė Burnytė ◽  
Aušra Morkūnienė ◽  
Violeta Mikštienė ◽  
...  

Abstract Background Autosomal recessive limb–girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. Case presentation In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband’s cDNA sample. The results revealed that this splicing variant disrupts the original 3′ splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). Conclusions Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Nobuhiro Hashimoto ◽  
Sumito Dateki ◽  
Eri Suzuki ◽  
Takatoshi Tsuchihashi ◽  
Aiko Isobe ◽  
...  

AbstractSitosterolemia is an autosomal recessive disorder that affects lipid metabolism and is characterized by elevated serum plant sterol levels, xanthomas, and accelerated atherosclerosis. In this study, we report a novel nonsense single-nucleotide variant, c.225G > A (p.Trp75*), and an East Asian population-specific missense multiple-nucleotide variant, c.1256_1257delTCinsAA (p.Ile419Lys), in the ABCG8 gene in a compound heterozygous state observed in a Japanese girl with sitosterolemia.


Sign in / Sign up

Export Citation Format

Share Document