scholarly journals Massively Parallel Simulations of Binary Black Hole Intermediate-Mass-Ratio Inspirals

2019 ◽  
Vol 41 (2) ◽  
pp. C97-C138 ◽  
Author(s):  
Milinda Fernando ◽  
David Neilsen ◽  
Hyun Lim ◽  
Eric Hirschmann ◽  
Hari Sundar
Author(s):  
Ziren Luo ◽  
Yan Wang ◽  
Yueliang Wu ◽  
Wenrui Hu ◽  
Gang Jin

Abstract Taiji is a Chinese space mission to detect gravitational waves in the frequency band 0.1 mHz to 1.0 Hz, which aims at detecting super (intermediate) mass black hole mergers and extreme (intermediate) mass ratio in-spirals. A brief introduction of its mission overview, scientific objectives, and payload design is presented. A roadmap is also given in which the launching time is set to the 2030s.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


2010 ◽  
Vol 104 (21) ◽  
Author(s):  
Carlos O. Lousto ◽  
Hiroyuki Nakano ◽  
Yosef Zlochower ◽  
Manuela Campanelli

2010 ◽  
Vol 81 (10) ◽  
Author(s):  
Pranesh A. Sundararajan ◽  
Gaurav Khanna ◽  
Scott A. Hughes

2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


Sign in / Sign up

Export Citation Format

Share Document