scholarly journals Wavelet-based Edge Multiscale Finite Element Method for Helmholtz problems in perforated domains

2021 ◽  
Vol 19 (4) ◽  
pp. 1684-1709
Author(s):  
Shubin Fu ◽  
Guanglian Li ◽  
Richard Craster ◽  
Sebastien Guenneau
Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Valentin Alekseev ◽  
Qili Tang ◽  
Maria Vasilyeva ◽  
Eric T. Chung ◽  
Yalchin Efendiev

In this paper, we consider a coupled system of equations that describes simplified magnetohydrodynamics (MHD) problem in perforated domains. We construct a fine grid that resolves the perforations on the grid level in order to use a traditional approximation. For the solution on the fine grid, we construct approximation using the mixed finite element method. To reduce the size of the fine grid system, we will develop a Mixed Generalized Multiscale Finite Element Method (Mixed GMsFEM). The method differs from existing approaches and requires some modifications to represent the flow and magnetic fields. Numerical results are presented for a two-dimensional model problem in perforated domains. This model problem is a special case for the general 3D problem. We study the influence of the number of multiscale basis functions on the accuracy of the method and show that the proposed method provides a good accuracy with few basis functions.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1382
Author(s):  
Denis Spiridonov ◽  
Maria Vasilyeva ◽  
Aleksei Tyrylgin ◽  
Eric T. Chung

In this paper, we present a multiscale model reduction technique for unsaturated filtration problem in fractured porous media using an Online Generalized Multiscale finite element method. The flow problem in unsaturated soils is described by the Richards equation. To approximate fractures we use the Discrete Fracture Model (DFM). Complex geometric features of the computational domain requires the construction of a fine grid that explicitly resolves the heterogeneities such as fractures. This approach leads to systems with a large number of unknowns, which require large computational costs. In order to develop a more efficient numerical scheme, we propose a model reduction procedure based on the Generalized Multiscale Finite element method (GMsFEM). The GMsFEM allows solving such problems on a very coarse grid using basis functions that can capture heterogeneities. In the GMsFEM, there are offline and online stages. In the offline stage, we construct snapshot spaces and solve local spectral problems to obtain multiscale basis functions. These spectral problems are defined in the snapshot space in each local domain. To improve the accuracy of the method, we add online basis functions in the online stage. The construction of the online basis functions is based on the local residuals. The use of online bases will allow us to get a significant improvement in the accuracy of the method. We present results with different number of offline and online multisacle basis functions. We compare all results with reference solution. Our results show that the proposed method is able to achieve high accuracy with a small computational cost.


Sign in / Sign up

Export Citation Format

Share Document