On the Rate of Complete Convergence for Weighted Sums of Arrays of Banach Space Valued Random Elements

2003 ◽  
Vol 47 (3) ◽  
pp. 455-468 ◽  
Author(s):  
T. C. Hu ◽  
D. Li ◽  
A. Rosalsky ◽  
A. I. Volodin
2002 ◽  
Vol 47 (3) ◽  
pp. 533-547 ◽  
Author(s):  
Tien-Chung Hu ◽  
Tien-Chung Hu ◽  
Deli Li ◽  
Deli Li ◽  
Andrew Rosalsky ◽  
...  

2012 ◽  
Vol 52 (3) ◽  
pp. 316-325 ◽  
Author(s):  
De Hua Qiu ◽  
Tien-Chung Hub ◽  
Manuel Ordóñez Cabrera ◽  
Andrei Volodin

Author(s):  
Robert Lee Taylor

Let{Xnk:k,n=1,2,…}be an array of row-wise independent random elements in a separable Banach space. Let{ank:k,n=1,2,…}be an array of real numbers such that∑k=1∞|ank|≤1and∑n=1∞exp(−α/An)<∞for eachα ϵ R+whereAn=∑k=1∞ank2. The complete convergence of∑k=1∞ankXnkis obtained under varying moment and distribution conditions on the random elements. In particular, laws of large numbers follow for triangular arrays of random elements, and consistency of the kernel density estimates is obtained from these results.


Stochastics ◽  
2021 ◽  
pp. 1-19
Author(s):  
Pingyan Chen ◽  
Manuel Ordóñez Cabrera ◽  
Andrew Rosalsky ◽  
Andrei Volodin

1987 ◽  
Vol 10 (4) ◽  
pp. 805-814 ◽  
Author(s):  
Robert Lee Taylor ◽  
Tien-Chung Hu

Let{Xnk}be an array of rowwise independent random elements in a separable Banach space of typep+δwithEXnk=0for allk,n. The complete convergence (and hence almost sure convergence) ofn−1/p∑k=1nXnk to 0,1≤p<2, is obtained when{Xnk}are uniformly bounded by a random variableXwithE|X|2p<∞. When the array{Xnk}consists of i.i.d, random elements, then it is shown thatn−1/p∑k=1nXnkconverges completely to0if and only ifE‖X11‖2p<∞.


1979 ◽  
Vol 2 (2) ◽  
pp. 309-323
Author(s):  
W. J. Padgett ◽  
R. L. Taylor

Let{Xk}be independent random variables withEXk=0for allkand let{ank:n≥1, k≥1}be an array of real numbers. In this paper the almost sure convergence ofSn=∑k=1nankXk,n=1,2,…, to a constant is studied under various conditions on the weights{ank}and on the random variables{Xk}using martingale theory. In addition, the results are extended to weighted sums of random elements in Banach spaces which have Schauder bases. This extension provides a convergence theorem that applies to stochastic processes which may be considered as random elements in function spaces.


Sign in / Sign up

Export Citation Format

Share Document