scholarly journals Short-term green tea extract supplementation attenuates the postprandial blood glucose and insulin response following exercise in overweight men

2016 ◽  
Vol 41 (10) ◽  
pp. 1057-1063 ◽  
Author(s):  
Brian J. Martin ◽  
Martin J. MacInnis ◽  
Jenna B. Gillen ◽  
Lauren E. Skelly ◽  
Martin J. Gibala

Green tea extract (GTE) ingestion improves glucose homeostasis in healthy and diabetic humans, but the interactive effect of GTE and exercise is unknown. The present study examined the effect of short-term GTE supplementation on the glycemic response to an oral glucose load at rest and following an acute bout of exercise, as well as substrate oxidation during exercise. Eleven sedentary, overweight men with fasting plasma glucose (FPG) ≥5.6 mmol·L−1 (age, 34 ± 13 years; body mass index = 32 ± 5 kg·m−2; FPG = 6.8 ± 1.0; mean ± SD) ingested GTE (3× per day, 1050 mg·day–1 total) or placebo (PLA) for 7 days in a double-blind, crossover design. The effects of a 75-g glucose drink were assessed on 4 occasions during both GTE and PLA treatments: On days 1 and 5 at rest, and again following an acute bout of exercise on days 3 and 8. The glycemic response was assessed via an indwelling continuous glucose monitor (CGM) and venous blood draws. At rest, 1-h CGM glucose area under the curve was not different (P > 0.05), but the postexercise response was lower after GTE versus PLA (330 ± 53 and 393 ± 65 mmol·L−1·min−1, main effect of treatment, P < 0.05). The 1-h postprandial peaks in venous blood glucose (8.6 ± 1.6 and 9.8 ± 2.2 mmol·L−1) and insulin (96 ± 59 and 124 ± 68 μIU·ml−1) were also lower postexercise with GTE versus PLA (time × treatment interactions, P < 0.05). In conclusion, short-term GTE supplementation did not affect postprandial glucose at rest; however, GTE was associated with an attenuated glycemic response following a postexercise oral glucose load. These data suggest that GTE might alter skeletal muscle glucose uptake in humans.

2016 ◽  
Vol 121 (6) ◽  
pp. 1282-1289 ◽  
Author(s):  
Brian J. Martin ◽  
Chris McGlory ◽  
Martin J. MacInnis ◽  
Mary K. Allison ◽  
Stuart M. Phillips ◽  
...  

We reported that supplementation with green tea extract (GTE) lowered the glycemic response to an oral glucose load following exercise, but via an unknown mechanism (Martin BJ, MacInnis MJ, Gillen JB, Skelly LE, Gibala MJ. Appl Physiol Nutr Metab 41: 1057–1063, 2016. Here we examined the effect of supplementation with GTE on plasma glucose kinetics on ingestion of a glucose beverage during exercise recovery. Eleven healthy, sedentary men (21 ± 2 yr old; body mass index = 23 ± 4 kg/m2, peak O2 uptake = 38 ± 7 ml·kg−1·min−1; means ± SD) ingested GTE (350 mg) or placebo (PLA) thrice daily for 7 days in a double-blind, crossover design. In the fasted state, a primed constant infusion of [U-13C6]glucose was started, and 1 h later, subjects performed a graded exercise test (25 W/3 min) on a cycle ergometer. Immediately postexercise, subjects ingested a 75-g glucose beverage containing 2 g of [6,6-2H2]glucose, and blood samples were collected every 10 min for 3 h of recovery. The rate of carbohydrate oxidation was lower during exercise after GTE vs. PLA (1.26 ± 0.34 vs. 1.48 ± 0.51 g/min, P = 0.04). Glucose area under the curve (AUC) was not different between treatments after drink ingestion (GTE = 1,067 ± 133 vs. PLA = 1,052 ± 91 mM/180 min, P = 0.91). Insulin AUC was lower after GTE vs. PLA (5,673 ± 2,153 vs. 7,039 ± 2,588 µIU/180 min, P = 0.05), despite similar rates of glucose appearance (GTE = 0.42 ± 0.16 vs. PLA = 0.43 ± 0.13 g/min, P = 0.74) and disappearance (GTE = 0.43 ± 0.14 vs. PLA = 0.44 ± 0.14 g/min, P = 0.57). We conclude that short-term GTE supplementation did not affect glucose kinetics following ingestion of an oral glucose load postexercise; however, GTE was associated with attenuated insulinemia. These findings suggest GTE lowers the insulin required for a given glucose load during postexercise recovery, which warrants further mechanistic studies in humans.


2020 ◽  
Vol 19 (3) ◽  
pp. 288-294
Author(s):  
Muriel Ávila-Seguel ◽  
Constanza Márquez-Urrizola ◽  
Gislaine Granfeldt ◽  
Katia Saez-Carrillo ◽  
Javad Sharifi-Rad ◽  
...  

Hypoglycemic and thermogenic effects are attributed to the capsaicinoid compounds (capsaicin). The aim of this study was to evaluate the acute effect of the consumption of 5g of chili pepper on thermogenesis and the glycemic response. In a pretest-post-test quasi-experimental study, the energy expenditure (EE) of 15 healthy men was evaluated by using indirect calorimetry at rest and with the consumption of 5g of Capsicum annum. In addition, the glycemic response after an oral glucose load was evaluated. After the consumption of C. annum, there was a significant increase in the EE of all the participants during the first few seconds postchili consumption. In sedentary participants, the consumption of chili pepper caused a significant decrease of blood glucose levels. The consumption of chili pepper has a potential immediate thermogenic effect during the first few seconds and, in sedentary people, it has a potential hypoglycemic effect.


2000 ◽  
Vol 84 (1) ◽  
pp. 19-23 ◽  
Author(s):  
P. J. Wood ◽  
M. U. Beer ◽  
G. Butler

Data from clinical studies established that there was an inverse linear relationship between measures of postprandial blood glucose and insulin responses to an oral glucose load, consumed in a drink, and the logarithm of viscosity of the drink. These data have been re-analysed using concentration and molecular weight as the dependent variables. Molecular weight (M) of the β-glucans used was determined using high-performance size exclusion chromatography equipped with a triple detector system of right angle light scattering, viscometry and refractive index. A significant relationship between changes in peak blood glucose and a combination of logarithm of the concentration and logarithm of M was found.


1971 ◽  
Vol 41 (6) ◽  
pp. 545-553 ◽  
Author(s):  
D. J. Galton ◽  
J. P. D. Wilson

1. The activities of hexokinase (EC 2.7.1.1) and phosphofructokinase (EC 2.7.1.11) have been studied in homogenates of adipose tissue taken from human diabetics, fasting and control patients. 2. Three isoenzymes of hexokinase were observed with apparent Km values for glucose of 1.04 × 10-5 m, 2.6 × 10-4 m and 2.9 × 10-4 m, respectively. 3. No change in activity of hexokinase was found in adipose tissue of untreated diabetics (n = 22), treated diabetics (n = 13) or non-diabetic controls. However, fasting was associated with a decrease of approx. 40% in the activity of hexokinase in adipose tissue. 4. In contrast, there was a marked decrease in the activity of phosphofructokinase in adipose tissue from untreated diabetics (n = 24) which was restored to normal by either insulin therapy or treatment by hypoglycaemic drugs. 5. There was a negative correlation between the phosphofructokinase/hexokinase ratio in adipose tissue and the fasting blood glucose (P = 0.01) and the 2 h blood glucose (P = 0.03) after an oral glucose load (50 g). 6. The functional significance of the changes in enzyme activities is discussed in relation to the glucose intolerance of diabetes.


2004 ◽  
Vol 106 (5) ◽  
pp. 527-533 ◽  
Author(s):  
David M. WOOD ◽  
Amanda L. BRENNAN ◽  
Barbara J. PHILIPS ◽  
Emma H. BAKER

Glucose is not detectable in airways secretions of normoglycaemic volunteers, but is present at 1–9 mmol·l-1 in airways secretions from people with hyperglycaemia. These observations suggest the existence of a blood glucose threshold at which glucose appears in airways secretions, similar to that seen in renal and salivary epithelia. In the present study we determined the blood glucose threshold at which glucose appears in nasal secretions. Blood glucose concentrations were raised in healthy human volunteers by 20% dextrose intravenous infusion or 75 g oral glucose load. Nasal glucose concentrations were measured using modified glucose oxidase sticks as blood glucose concentrations were raised. Glucose appeared rapidly in nasal secretions once blood glucose was clamped at approx. 12 mmol·l-1 (n=6). On removal of the clamp, nasal glucose fell to baseline levels in parallel with blood glucose concentrations. An airway glucose threshold of 6.7–9.7 mmol·l-1 was identified (n=12). In six subjects with normal glucose tolerance, blood glucose concentrations rose above the airways threshold and nasal glucose became detectable following an oral glucose load. The presence of an airway glucose threshold suggests that active glucose transport by airway epithelial cells normally maintains low glucose concentrations in airways secretions. Blood glucose exceeds the airway threshold after a glucose load even in people with normal glucose tolerance, so it is likely that people with diabetes or hyperglycaemia spend a significant proportion of each day with glucose in their airways secretions.


1974 ◽  
Vol 11 (4) ◽  
pp. 265-276 ◽  
Author(s):  
Olga Szabo ◽  
Werner Oppermann ◽  
Rafael A. Camerini-Dávalos ◽  
Carl Victor

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 953
Author(s):  
Henrique Silva ◽  
Jernej Šorli ◽  
Helena Lenasi

Microcirculation in vivo has been assessed using non-invasive technologies such as laser Doppler flowmetry (LDF). In contrast to chronic hyperglycemia, known to induce microvascular dysfunction, the effects of short-term elevations in blood glucose on microcirculation are controversial. We aimed to assess the impact of an oral glucose load (OGL) on the cutaneous microcirculation of healthy subjects, quantified by LDF and coupled with wavelet transform (WT) as an interpretation tool. On two separate occasions, sixteen subjects drank either a glucose solution (75 g in 250 mL water) or water (equal volume). LDF signals were obtained in two anatomical sites (forearm and finger pulp) before and after each load (pre-load and post-load, respectively), in resting conditions and during post-occlusive reactive hyperemia (PORH). The WT allowed decomposition of the LDF signals into their spectral components (cardiac, respiratory, myogenic, sympathetic, endothelial NO-dependent). The OGL blunted the PORH response in the forearm, which was not observed with the water load. Significant differences were found for the cardiac and sympathetic components in the glucose and water groups between the pre-load and post-load periods. These results suggest that an OGL induces a short-term subtle microvascular impairment, probably involving a modulation of the sympathetic nervous system.


2020 ◽  
Vol 6 (4) ◽  
pp. 432-438
Author(s):  
EO Taiwo ◽  
LO Thanni

Background: Studying post-prandial fluctuations in blood glucose has high physiological and clinical relevance. Physical exercise is known to influence this fluctuation. Objectives: To determine the gender difference in glucose tolerance following physical exercise in a population of university students. Methods: A total of 146 students were randomly selected from the Olabisi Onabanjo University, Sagamu, Ogun State, southwest Nigeria. Following overnight fast, Oral Glucose Tolerance Test (OGTT) was carried out. Pre-exercise, fasting blood glucose (FBG) was measured at 0 mins, and after oral glucose load of 75 grams at 30 minutes intervals for 2 hours. The physical exercise involved cycling using a bicycle ergometer for an hour. Thereafter, OGTT was conducted again 1 hour post-exercise. Results: The ages of the subjects ranged from 20 years to 49 years. There were 73 (50.0%) females. The mean Body Mass Index (BMI) of 23.5±1.1 kg/m2 for females was comparable to 22.8±0.3 kg/m2 for the males (p = 0.571). Seven (9.6%) females were obese compared to 2 (2.7%) males. The mean post-prandial blood glucose increased from 71.6±1.6 mg/dl to 90.8±1.8 mg/dl after oral glucose load and thereafter to 88.0±4.2 mg/dl at 120 minutes among males. The post-exercise blood glucose patterns included a significant reduction in the mean FBS for males compared to females (64.5±1.9 mg/dl vs. 71.7±1.9 mg/dl; p = 0.001) Conclusions: Glucose tolerance with exercise is better in females than males. The clinical importance of physical exercise lies in its effect on glucose tolerance.


Diabetes ◽  
1974 ◽  
Vol 23 (2) ◽  
pp. 132-137 ◽  
Author(s):  
N. J. Aparicio ◽  
F. E. Puchulu ◽  
J. J. Gagliardino ◽  
M. Ruiz ◽  
J. M. Llorens ◽  
...  

2008 ◽  
Vol 40 (Supplement) ◽  
pp. S71
Author(s):  
Thomas K. Pellinger ◽  
Breanna R. Dumke ◽  
John R. Halliwill

Sign in / Sign up

Export Citation Format

Share Document