Is active recovery during cold water immersion better than active or passive recovery in thermoneutral water for postrecovery high-intensity sprint interval performance?

2020 ◽  
Vol 45 (3) ◽  
pp. 251-257
Author(s):  
Daryl M.G. Hurrie ◽  
Gordon G. Giesbrecht

High-intensity exercise is impaired by increased esophageal temperature (Tes) above 38 °C and/or decreased muscle temperature. We compared the effects of three 30-min recovery strategies following a first set of three 30-s Wingate tests (set 1), on a similar postrecovery set of Wingate tests (set 2). Recovery conditions were passive recovery in thermoneutral (34 °C) water (Passive-TN) and active recovery (underwater cycling; ∼33% maximum power) in thermoneutral (Active-TN) or cold (15 °C) water (Active-C). Tes rose for all conditions by the end of set 1 (∼1.0 °C). After recovery, Tes returned to baseline in both Active-C and Passive-TN but remained elevated in Active-TN (p < 0.05). At the end of set 2, Tes was lower in Active-C (37.2 °C) than both Passive-TN (38.1 °C) and Active-TN (38.8 °C) (p < 0.05). From set 1 to 2 mean power did not change with Passive-TN (+0.2%), increased with Active-TN (+2.4%; p < 0.05), and decreased with Active-C (–3.2%; p < 0.05). Heart rate was similar between conditions throughout, except at end-recovery; it was lower in Passive-TN (92 beats·min−1) than both exercise conditions (Active-TN, 126 beats·min−1; Active-C, 116 beats·min−1) (p < 0.05). Although Active-C significantly reduced Tes, the best postrecovery performance occurred with Active-TN. Novelty An initial set of 3 Wingates increased Tes to ∼38 °C. Thirty minutes of Active-C was well tolerated, and decreased Tes and blood lactate to baseline values, but decreased subsequent Wingate performance.

2019 ◽  
Vol 11 (1) ◽  
pp. 189-192
Author(s):  
Ritva S. Taipale ◽  
Johanna K. Ihalainen ◽  
Phillip J. Jones ◽  
Antti A. Mero ◽  
Keijo Häkkinen ◽  
...  

SummaryStudy aim: The purpose of this study was to compare the effects of cold-water immersion (CWI) vs. active recovery performed after each individual strength and endurance training session over a 10-week period of high-intensity combined strength and endurance training.Materials and methods: Seventeen healthy men completed 10 weeks of high-intensity combined strength and endurance training. One group (AR, n = 10) completed active recovery that included 15 minutes of running at 30–40% VO2max after every strength training session while the other group (CWI, n = 7) completed 5 minutes of active recovery (at the same intensity as the AR group) followed by 10 minutes of cold-water (12 ± 1°C) immersion. During CWI, the subjects were seated passively during the 10 minutes of cold-water immersion and the water level remained just below the pectoral muscles. Muscle strength and power were measured by isometric bilateral, 1 repetition maximum, leg press (ISOM LP) and countermovement jump (CMJ) height. Endurance performance was measured by a 3000 m running time trial. Serum testosterone, cortisol, and IGF-1 were assessed from venous blood samples.Results: ISOM LP and CMJ increased significantly over the training period, but 3000 m running time increased only marginally. Serum testosterone, cortisol, and IGF-1 remained unchanged over the intervention period. No differences between the groups were observed.Conclusions: AR and CWI were equally effective during 10 weeks of high-intensity combined strength and endurance training. Thus, physically active individuals participating in high-intensity combined strength and endurance training should use the recovery method they prefer.


2014 ◽  
Vol 307 (8) ◽  
pp. R998-R1008 ◽  
Author(s):  
Llion A. Roberts ◽  
Kazunori Nosaka ◽  
Jeff S. Coombes ◽  
Jonathan M. Peake

We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load ( P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.


2015 ◽  
Vol 309 (4) ◽  
pp. R389-R398 ◽  
Author(s):  
Llion A. Roberts ◽  
Makii Muthalib ◽  
Jamie Stanley ◽  
Glen Lichtwark ◽  
Kazunori Nosaka ◽  
...  

Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (−21.5 ± 8.8%) and tHb (−10.1 ± 7.7 μM) decreased after exercise ( P < 0.05). During CWI, Q̇ (−1.1 ± 0.7 l) and Tmuscle (−6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased ( P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased ( P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased ( P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high ( P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (−30 to −45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT ( P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI ( P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature.


2009 ◽  
Vol 12 ◽  
pp. S23
Author(s):  
J. Vaile ◽  
B. Stefanovic ◽  
C. O’Hagan ◽  
M. Walker ◽  
N. Gill ◽  
...  

2013 ◽  
Vol 114 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Jamie Stanley ◽  
Jonathan M. Peake ◽  
Jeff S. Coombes ◽  
Martin Buchheit

2013 ◽  
Vol 115 (9) ◽  
pp. 1324-1331 ◽  
Author(s):  
Kevin De Pauw ◽  
Bart Roelands ◽  
Uroš Marušič ◽  
Helio Fernandez Tellez ◽  
Kristel Knaepen ◽  
...  

The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.


2020 ◽  
Vol 120 (12) ◽  
pp. 2625-2634
Author(s):  
E. K. Ahokas ◽  
H. Kyröläinen ◽  
A. A. Mero ◽  
S. Walker ◽  
H. G. Hanstock ◽  
...  

Abstract Purpose The aim of this study was to compare the efficacy of three water immersion interventions performed after active recovery compared to active recovery only on the resolution of inflammation and markers of muscle damage post-exercise. Methods Nine physically active men (n = 9; age 20‒35 years) performed an intensive loading protocol, including maximal jumps and sprinting on four occasions. After each trial, one of three recovery interventions (10 min duration) was used in a random order: cold-water immersion (CWI, 10 °C), thermoneutral water immersion (TWI, 24 °C), contrast water therapy (CWT, alternately 10 °C and 38 °C). All of these methods were performed after an active recovery (10 min bicycle ergometer), and were compared to active recovery only (ACT). 5 min, 1, 24, 48, and 96 h after exercise bouts, immune response and recovery were assessed through leukocyte subsets, monocyte chemoattractant protein-1, myoglobin and high-sensitivity C-reactive protein concentrations. Results Significant changes in all blood markers occurred at post-loading (p < 0.05), but there were no significant differences observed in the recovery between methods. However, retrospective analysis revealed significant trial-order effects for myoglobin and neutrophils (p < 0.01). Only lymphocytes displayed satisfactory reliability in the exercise response, with intraclass correlation coefficient > 0.5. Conclusions The recovery methods did not affect the resolution of inflammatory and immune responses after high-intensity sprinting and jumping exercise. It is notable that the biomarker responses were variable within individuals. Thus, the lack of differences between recovery methods may have been influenced by the reliability of exercise-induced biomarker responses.


2016 ◽  
Vol 41 (11) ◽  
pp. 1163-1170 ◽  
Author(s):  
Avina McCarthy ◽  
James Mulligan ◽  
Mikel Egaña

A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (Ppeak) and 30 s at 90% Ppeak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P < 0.05) longer during Ex2 following the 5- and 10-min cold-water immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P < 0.05) lower during most periods of Ex2 after both cold-water immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.


Sign in / Sign up

Export Citation Format

Share Document