The effect of light availability and basal area on cone production in Abies balsamea and Picea glauca

2002 ◽  
Vol 80 (4) ◽  
pp. 370-377 ◽  
Author(s):  
David F Greene ◽  
Christian Messier ◽  
Hugo Asselin ◽  
Marie-Josée Fortin

Mean annual seed production is assumed to be proportional to basal area for canopy trees, but it is not known if subcanopy trees produce fewer seeds than expected (given their size) because of low light availability. Ovulate cone production was examined for balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) in 1998 and for balsam fir in 2000 in western Quebec using subcanopy stems, near or far from forest edges, or (at one site) planted white spruce trees in fully open conditions. A very simple light model for transmission through mature trembling aspen (Populus tremuloides Michx.) crowns and through boles near forest edges was developed to account for the effect of light receipt on cone production. The enhanced light near forest edges (e.g., recent clearcuts) leads to about a doubling of cone production for subcanopy stems. The minimum subcanopy height for cone production far from an edge is about 10 m for balsam fir and 14 m for white spruce, with these minima decreasing near edges. By contrast, the minimum height for white spruce in a plantation (full light) is about 3 m. Accounting for light receipt leads to an increase in the explained variance.Key words: balsam fir, cone production, light model, regressions, subcanopy stems, white spruce.

2000 ◽  
Vol 76 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Patricia Raymond ◽  
Jean-Claude Ruel ◽  
Marius Pineau

Stand regeneration failures, sometimes observed in rich second growth balsam fir stands, prompted a study in 1991 to assess the effects of the shelterwood cutting system on regeneration of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss) and paper birch (Betula papyrifera Marsh). The factorial experiment design (split-plot) includes forest cover reduction (0% and 25% of basal area) in main plots and germination substrate (mineral soil, litter removed and control) in subplots. Results of five growing seasons showed that germination substrate was the main factor determining first-year seedling establishment, and that cover reduction became important for seedling survival and long-term establishment of the three species. A 25% canopy reduction combined with mineral seedbed treatment resulted in the best regeneration densities of the three species. Thus far, the results demonstrate the importance of combining humus disturbance to seed cutting in order to achieve regeneration goals set for the future stand. Key words: shelterwood cutting system, balsam fir, white spruce, paper birch, regeneration, seed cutting, germination substrate


2002 ◽  
Vol 32 (4) ◽  
pp. 642-652 ◽  
Author(s):  
S Meunier ◽  
J -C Ruel ◽  
G Laflamme ◽  
A Achim

Information on eastern Canadian tree species vulnerability to windthrow is scarce. Some statements on relative species vulnerability have been made but they rely on empirical observations, which are often difficult to generalize. In this context, a study was conducted to compare the overturning resistance of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) on a mesic site. To establish which tree characteristics would best explain the critical turning moment, simple linear regressions were calculated using tree dendrometric data. The best regressions were obtained with stem weight. With this variable, resistance to overturning did not differ between the two species. Only regressions involving total height showed a significantly greater resistance for white spruce. This difference can be explained by a difference between the species in height–diameter relationships. For a similar height, spruce has a greater diameter, involving a higher stem weight and thus a greater resistance. Decay did not play a major role in our experiment as trees with external defects were excluded. Our results suggest that to minimize losses from windthrow, silvi cultural treatments on mesic sites should try to increase the proportion of trees of either species with the lowest height/diameter ratio.


1971 ◽  
Vol 49 (7) ◽  
pp. 1005-1011 ◽  
Author(s):  
J. P. Kimmins

The amino acids of new and old foliage of flowering and non-flowering balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) were investigated using two-dimensional descending paper chromatography. The data were analyzed for variation associated with age of foliage, age of tree, and flowering condition. The concentration of foliar amino acids was greater in balsam fir than in white spruce, and greater in new foliage than old foliage.The difference in concentration between foliage of flowering and non-flowering trees was smaller. However, the new foliage of flowering fir had higher levels of most of the amino acids examined than any other foliage category. This appears to reflect the known suitability of these foliage categories for spruce budworm larvae. While the data presented do not quantify the ecological significance of this apparent correlation, they do support the theory that variations in the nutritional quality of host plants play a very important role in the dynamics of herbivore populations.


1958 ◽  
Vol 34 (1) ◽  
pp. 39-47 ◽  
Author(s):  
J. R. Blais

The relationship between spruce budworm defoliation and radial growth at breast height for balsam fir and white spruce trees of merchantable size was studied in various stands in northwestern Ontario. Defoliation was recorded yearly for these stands from the beginning of the infestation, and radial growth measurements were obtained from increment cores. The first year of radial growth suppression was calculated by comparing the growth of the affected species with that of jack pine and red pine trees by means of a growth-ratio technique. Apparent suppression in balsam fir and white spruce varied between stands, and, generally, occurred at the earliest in the second year and at the latest in the fourth year of severe defoliation. A wide ring at the base of the tree coinciding with the first year of suppression as reported by Craighead was non-existent.


2003 ◽  
Vol 33 (1) ◽  
pp. 41-46 ◽  
Author(s):  
C Calogeropoulos ◽  
D F Greene ◽  
C Messier ◽  
S Brais

We used a micrometeorological dispersal model to simulate seed and seedling distributions derived from subcanopy balsam fir (Abies balsamea (L.) Mill.) source trees in a trembling aspen (Populus tremuloides Michx.) dominated forest. Our first objective was to determine the effect of substituting basal area for cone production as a proxy for seed output. The results showed that the r2 from the regression of predicted versus observed densities increased by ~5% for seeds and ~15% for seedling simulations. Our second objective was to determine the effects of changing the median horizontal wind speed. The median speed in this forest environment varies according to the proportion of leaves abscised. For values of the median expected wind speed between the extremes of leafless and full-canopy forests, the r2 of predicted versus observed varied between 0.35 and 0.49 for seeds and between 0.33 and 0.62 for seedling simulations. We demonstrated that the simple one-dimensional model can have added precision if the dispersal parameters are chosen so as to allow more fine-scale variation.


2016 ◽  
Vol 46 (10) ◽  
pp. 1217-1223 ◽  
Author(s):  
Richard Kabzems ◽  
Philip G. Comeau ◽  
Cosmin N. Filipescu ◽  
Bruce Rogers ◽  
Amanda F. Linnell Nemec

Planting white spruce (Picea glauca (Moench) Voss) under established aspen (Populus tremuloides Michx.) stands has substantial potential for regenerating mixedwood ecosystems in the western Canadian boreal forest. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. Under future climatic regimes with more frequent and severe drought episodes, underplanting may be a cost-effective strategy for lowering the risk of mortality in mixedwood regeneration. We examine the growth of white spruce during the first 18 years after being planted beneath a 39-year-old stand of trembling aspen. Treatments included thinning from over 6000 stems·ha−1 to 3000, 2000, and 1000 stems·ha−1 and fertilization. Initial stimulation of understory vegetation by fertilization had no measureable effect on spruce heights or diameters at year 18. Aspen thinning treatments did not have a significant effect on spruce height growth rates after spruce crowns had emerged above the understory shrub layer due to rapid aspen basal area increases after thinning. Small, but significant, increases for spruce height and diameter were present in the 1000 and 2000 stem·ha−1 aspen thinnings. A much wider range of aspen stand conditions may be suitable for planting spruce to create mixedwood ecosystems than has been previously considered.


2004 ◽  
Vol 34 (9) ◽  
pp. 1870-1882 ◽  
Author(s):  
V G Nealis ◽  
J Régnière

Demographic data from a 15-year outbreak of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae), in a boreal mixedwood forest in Ontario, Canada, are used to interpret stand-level ecological disturbance in terms of susceptibility and vulnerability (mortality) of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) BSP). All three host-tree species are highly susceptible for oviposition by the spruce budworm and all are suitable for completion of the budworm life cycle. Host-related differences in susceptibility arise from the degree of synchrony between spruce budworm phenology during the feeding stages and host-tree phenology. Spruce budworm density was highest on white spruce throughout the budworm's life cycle and over the course of the outbreak, but more rapid flushing and growth of current-year buds in white spruce reduced damage relative to that on balsam fir. Conversely, later flushing of current-year buds on black spruce led to a reduction in budworm density early in the season and a corresponding reduction in defoliation. The combination of high budworm densities and severe defoliation caused mortality first on balsam fir. By the end of the outbreak, 89% of the balsam fir component >10 cm DBH was eliminated compared with 49% of the white spruce in the same size class. The lower susceptibility of black spruce resulted in survival of all but the smallest size classes of that species. Nonhost species such as trembling aspen (Populus tremuloides Michx.) nearly doubled their basal area during the outbreak. The results link processes inherent in the insect–host relationship with the population ecology of the insect and the disturbance ecology of the forest.


2009 ◽  
Vol 85 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Alison D Lennie ◽  
Simon M Landhäusser ◽  
Victor J Lieffers ◽  
Derek Sidders

Trembling aspen regeneration was studied in 2 types of partial harvest systems designed to harvest mature aspen but protect immature spruce and encourage natural aspen regeneration. Two partial harvest systems, where the residual aspen was either left in strips or was dispersed uniformly, were compared to traditional clearcuts. After the first and second year since harvest, aspen sucker density and growth was similar between the 2 partial harvests, but was much lower than in the clearcuts. However, in the partial cuts the regeneration density was very much dependent on the location relative to residual trees. The density of regeneration was inversely related to the basal area of residual aspen; however, sucker height was inversely related to the basal area of the residual spruce. Although there were adequate numbers of suckers after partial harvest, their viability and contribution to the long-term productivity of these mixedwood stands is not clear. Key words: silvicultural systems, forest management, residual canopy, white spruce, Populus tremuloides, Picea glauca, traffic


2003 ◽  
Vol 33 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Marcel Prévost ◽  
David Pothier

We present the 5-year combined effects of different cutting intensities (removal of 0, 35, 50, 65, and 100% of basal area) and scarification on available light, soil temperature, and regeneration dynamics in a mixed aspen– conifer stand in Quebec, Canada. Compared with the control, the 35% cut did not change transmitted light to the under story (<20% of full light), while the 50, 65, and 100% cuttings transmitted 30, 48, and 90% of full light, respectively, during the first summer. Trembling aspen (Populus tremuloides Michx.) suckering increased with percent basal area removal (p < 0.001). After 5 years, the 35 and 50% cuttings limited growth and survival of suckers (<1000 stems/ha, of which 5% are >1 m high), but the 65 and 100% cuttings favoured their development (8000 and 11 000 stems/ha, respectively, of which 29 and 38%, respectively, are >2 m high). Balsam fir (Abies balsamea (L.) Mill.) responded well to canopy opening alone with a maximal recruitment (31 000 seedlings/ha) in the 50% cut. Spruces (white spruce, Picea glauca (Moench) Voss, and red spruce, Picea rubens Sarg.) establish following scarification only, with a better response in the 65% cut (32 000 seedlings/ha) than in the 50 (15 000), 35 (10 000), and 0% (8000) cuttings.


Sign in / Sign up

Export Citation Format

Share Document